cứu bài này vs khó qué, vẽ hình giúp mình luôn nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a, x^8 - 1`
`=(x^4)^2 - 1^2`
`= (x^4 - 1)(x^4 + 1)`
`= (x^2 - 1)(x^2 + 1)(x^4 + 1)`
`= (x-1)(x+1)(x^2+1)(x^4+1)`
`b, x^10 - 1`
`= (x^5)^2-1^2`
`=(x^5-1)(x^5+1)`
`= (x - 1)(x^4 + x^3 + x^2 + x + 1)(x^5+1)`
Ta có:
`(25/13)^15 = (25^15)/(13^15) > 1`
`(13/25)^20 = (13^20)/(25^20) < 1`
`-> (13/25)^20 < 1 < (25/13)^15`
Vậy: `(25/13)^15 > (13/25)^20`
(\(\dfrac{25}{13}\))15 > 115 > 1
(\(\dfrac{13}{25}\))20 < 120 < 1
Vậy (\(\dfrac{25}{13}\))15 > (\(\dfrac{13}{25}\))20
Do \(f\left(3\right)=f\left(-3\right)\Rightarrow a.3^2+b.3+c=a.\left(-3\right)^2+b.\left(-3\right)+c\)
\(\Rightarrow9a+3b+c=9a-3b+c\)
\(\Rightarrow6b=0\)
\(\Rightarrow b=0\)
\(\Rightarrow f\left(x\right)=ax^2+c\)
\(f\left(-x\right)=a.\left(-x\right)^2+x=ax^2+c\)
\(\Rightarrow f\left(x\right)=f\left(-x\right)\)
g: n là số lẻ nên n=2k+1
Vì 5 là số nguyên tố nên \(n^5-n⋮5\)
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)
=>\(n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮6\)
=>\(n^5-n⋮6\)
mà \(n^5-n⋮5;ƯCLN\left(5;6\right)=1\)
nên \(n^5-n⋮\left(5\cdot6\right)=30\)
\(n^5-n=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
\(=\left(2k+1\right)\left(2k+1-1\right)\left(2k+1+1\right)\left[\left(2k+1\right)^2+1\right]\)
\(=\left(2k+1\right)\cdot2k\cdot\left(2k+2\right)\left(4k^2+4k+2\right)\)
\(=8k\left(k+1\right)\left(2k^2+2k+1\right)\left(2k+1\right)\)
Vì k;k+1 là hai số nguyên liên tiếp
nên k(k+1) chia hết cho 2
=>\(8k\left(k+1\right)⋮16\)
=>\(n^5-n⋮16\)
mà \(n^5-n⋮30\)
nên \(n^5-n⋮BCNN\left(30;16\right)\)
=>\(n^5-n⋮240\)
f: Tích của 5 số nguyên liên tiếp sẽ chia hết cho 5!
mà \(5!=1\cdot2\cdot3\cdot4\cdot5=120\)
nên tích của 5 số nguyên liên tiếp sẽ chia hết cho 120
e: \(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)
=>\(n^3+3n^2+2n⋮6\)
\(\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\) (hằng đẳng thức số 2)
(\(x+y\))2 - 2(\(x+y\)) + 1
= (\(x+y\))2 - 2(\(x+y\)).1 + 12
= (\(x+y\) - 1)2
\(S=\sqrt{4+3\sqrt{4+3\sqrt{4+...}}}\)
\(S=\sqrt{4+3S}\)
\(S^2=4+3S\)
\(S^2-3S-4=0\)
\(\left(S+1\right)\left(S-4\right)=0\)
\(\Rightarrow S=4\) (do \(S>0\))
Xét tứ giác ABDF có
AB//DF
AF//BD
Do đó: ABDF là hình bình hành
=>AB=DF
=>DF=DC
=>D là trung điểm của FC
Xét tứ giác ADBE có
AD//BE
AE//BD
Do đó: ADBE là hình bình hành
=>AD=BE
=>BE=BC
=>B là trung điểm của EC
Ta có: ADBE là hình bình hành
=>DB=AE
ABDF là hình bình hành
=>BD=AF
Do đó: AF=AE
=>A là trung điểm của FE
Xét ΔECF có
ED,FB,CA là các đường trung tuyến
Do đó: ED,FB,CA đồng quy
`a, x^2-6x+9-y^2`
`= (x-3)^2-y^2`
`=(x-3-y)(x-3+y)`
`b,x^2-4y^2+4x+4`
`= (x^2+4x+4)-(2y)^2`
`= (x+2)^2-(2y)^2`
`=(x+2-2y)(x+2+2y)`
`c, 4x^2+4x-y^2+1`
`=4x^2+4x+1-y^2`
`=(2x+1)^2-y^2`
`=(2x+1-y)(2x+1+y)`
`d, 4x^2-y^2+4y-4`
`= 4x^2-(y^2-4y+4)`
`= (2x)^2-(y-2)^2`
`= (2x-y+2)(2x+y-2)`
a: Ta có: \(\widehat{HAC}+\widehat{ACB}=90^0\)(ΔAHC vuông tại H)
\(\widehat{ABC}+\widehat{ACB}=90^0\)(ΔABC vuông tại A)
Do đó: \(\widehat{HAC}=\widehat{ABC}\)
b: Ta có: \(\widehat{CAK}+\widehat{BAK}=\widehat{BAC}=90^0\)
\(\widehat{CKA}+\widehat{HAK}=90^0\)(ΔHAK vuông tại H)
mà \(\widehat{BAK}=\widehat{HAK}\)(AK là phân giác của góc HAB)
nên \(\widehat{CAK}=\widehat{CKA}\)
c: Xét ΔCAK có \(\widehat{CAK}=\widehat{CKA}\)
nên ΔCAK cân tại C
ΔCAK cân tại C
mà CP là đường phân giác
nên CP\(\perp\)AK