Tính:
A= \(\dfrac{-1}{2}\cdot\) \(\dfrac{1}{3}\) + \(\dfrac{-1}{3}\cdot\) \(\dfrac{1}{4}+...+\dfrac{-1}{19}\cdot\dfrac{1}{20}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Olm chào em, đây là toán nâng cao chuyên đề so sánh lũy thừa, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng lũy thừa trung gian như sau:
Giải:
666777 = (6667)111; 888444 = (8884)111
6667 = 2227.37 = 2227.2187
8884 = (222.4)4 = 2224.44 = 2224.256
Vì 2227 > 2224; 2187 > 256 nên
2227.2187 > 2224.256
⇒ 6667 > 8884
⇒ (6667)111 > (8884)111
⇒ 666777 > 888444
Giả sử \(\sqrt{3}\) là số hữu tỉ khi đó: \(\sqrt{3}\)= \(\dfrac{a}{b}\) (a; b \(\in\) Z+)
⇒ 3 = \(\dfrac{a^2}{b^2}\) ⇒ 3b2 = a2
Vì a; b \(\in\) Z+ ⇒ a2; b2 là số chính phương
⇒ 3 là số chính phương (vô lý vì số chính phương không thể có tận cùng bằng 3)
Vậy điều giả sử là sai nên \(\sqrt{3}\) là số vô tỉ.
\(\dfrac{5}{21}\) x (- \(\dfrac{7}{4}\)) + \(\dfrac{7}{21}\) x (- \(\dfrac{7}{4}\))
= - \(\dfrac{7}{4}\) x (\(\dfrac{5}{21}\) + \(\dfrac{7}{21}\))
= - \(\dfrac{7}{4}\) x \(\dfrac{12}{21}\)
= - 1
Từ 1/11/2022 đến 1/11/2024 là 2024-2022=2 năm
Số tiền ông Tài nhận về sau 2 năm là:
\(200\cdot\left(1+5,2\%\right)^2=221,3408\)(triệu đồng)
Câu 1:
a: \(k=\dfrac{y}{x}=\dfrac{3}{5}\)
b: \(\dfrac{y}{x}=\dfrac{3}{5}\)
=>\(y=\dfrac{3}{5}x\)
c: Thay x=-5 vào \(y=\dfrac{3}{5}x\), ta được:
\(y=\dfrac{3}{5}\cdot\left(-5\right)=-3\)
Thay x=15 vào \(y=\dfrac{3}{5}x\), ta được:
\(y=\dfrac{3}{5}\cdot15=9\)
Câu 4: Gọi khối lượng giấy vụn ba chi đội 7A,7B,7C thu được lần lượt là a(kg),b(kg),c(kg)
(Điều kiện:a>0; b>0; c>0)
Khối lượng giấy vụn của ba đội thu được lần lượt tỉ lệ với 9;7;8
=>\(\dfrac{a}{9}=\dfrac{b}{7}=\dfrac{c}{8}\)
Tổng khối lượng là 120kg nên a+b+c=120
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{9}=\dfrac{b}{7}=\dfrac{c}{8}=\dfrac{a+b+c}{9+7+8}=\dfrac{120}{24}=5\)
=>\(a=5\cdot9=45;b=7\cdot5=35;c=8\cdot5=40\)
vậy: Gọi khối lượng giấy vụn ba chi đội 7A,7B,7C thu được lần lượt là 45(kg),35(kg),40(kg)
a: Ta có: mn//xy
=>\(\widehat{mAB}=\widehat{ABy}\)(hai góc so le trong)
=>\(\widehat{mAB}=60^0\)
b:
Ta có: \(\widehat{yBc}+\widehat{yBA}=180^0\)(hai góc kề bù)
=>\(\widehat{yBc}=180^0-60^0=120^0\)
Bz là phân giác của góc yBc
=>\(\widehat{yBz}=\widehat{cBz}=\dfrac{\widehat{yBc}}{2}=\dfrac{120^0}{2}=60^0\)
Ta có: \(\widehat{nAB}+\widehat{mAB}=180^0\)(hai góc kề bù)
=>\(\widehat{nAB}=180^0-60^0=120^0\)
At là phân giác của góc nAB
=>\(\widehat{nAt}=\widehat{tAB}=\dfrac{\widehat{nAB}}{2}=\dfrac{120^0}{2}=60^0\)
Ta có: \(\widehat{ABz}=\widehat{ABy}+\widehat{yBz}=60^0+60^0=120^0\)
Ta có: \(\widehat{ABz}+\widehat{BAt}=120^0+60^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên At//Bz
a: Xét ΔDAC vuông tại A và ΔCBE vuông tại B có
DA=CB
AC=BE
Do đó: ΔDAC=ΔCBE
b: ΔDAC=ΔCBE
=>\(\widehat{DCA}=\widehat{CEB}\)
=>\(\widehat{DCA}+\widehat{ECB}=90^0\)
Ta có: \(\widehat{DCA}+\widehat{ECB}+\widehat{DCE}=180^0\)
=>\(\widehat{DCE}+90^0=180^0\)
=>\(\widehat{DCE}=90^0\)
=>CD\(\perp\)CE
\(A=-\dfrac{1}{2}\cdot\dfrac{1}{3}+\dfrac{-1}{3}\cdot\dfrac{1}{4}+...+\dfrac{-1}{19}\cdot\dfrac{1}{20}\)
\(=-\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{19\cdot20}\right)\)
\(=-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)\)
\(=-\left(\dfrac{1}{2}-\dfrac{1}{20}\right)=-\left(\dfrac{10}{20}-\dfrac{1}{20}\right)=-\dfrac{9}{20}\)