cho các số thực x,y,z,t thoả mãn\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
cmr P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)
có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`# \text {Ryo}`
So sánh ạ?
\(2^{225}\text{ và }3^{150}\)
Ta có:
\(2^{225}=2^{3\cdot75}=\left(2^3\right)^{75}=8^{75}\\ 3^{150}=3^{2\cdot75}=\left(3^2\right)^{75}=9^{75}\)
Vì `9 > 8 \Rightarrow`\(9^{75}>8^{75}\)
\(\Rightarrow2^{225}< 3^{150}\)
2²²⁵ = (2³)⁷⁵ = 8⁷⁵
3¹⁵⁰ = (3²)⁷⁵ = 9⁷⁵
Do 8 < 9 nên 8⁷⁵ < 9⁷⁵
Vậy 2²²⁵ < 3¹⁵⁰
8⁵ = (2³)⁵ = 2¹⁵ = 2.2¹⁴
3.4⁷ = 3.(2²)⁷ = 3.2¹⁴
Do 2 < 3 nên 2.2¹⁴ < 3.2¹⁴
Vậy 8⁵ < 3.4⁷
\(8^5=2^{15}=2.2^{14}\)
\(3.4^7=3.2^{14}>2.2^{14}\)
\(\Rightarrow8^5< 3.4^7\)
`# \text {Kaizu DN}`
`a)`
`(3x + 6) + (7x - 14) = 0?`
\(\Rightarrow3x+6+7x-14=0\\ \Rightarrow\left(3x+7x\right)+\left(6-14\right)=0\\ \Rightarrow10x-8=0\\ \Rightarrow10x=8\Rightarrow x=\dfrac{8}{10}\\ \Rightarrow x=\dfrac{4}{5}\)
Vậy, \(x=\dfrac{4}{5}\)
`b)`
`17y + 35 + 4x + 17 = 42`
\(\Rightarrow\left(17y+17\right)+\left(35+4x\right)=42\\ \Rightarrow17\left(y+1\right)+\left(35+4x\right)=42\)
Bạn xem lại đề ;-;.
b3:
a, <
b, <
c, <
d, >
c2, >
f, >
Bài 4:
0,4636363... < 0,463736< 0,4656365< 0,466< 7/15
b3:
a, <
b, <
c, <
d, >
c2, >
f, >
Bài 4:
0,4636363... < 0,463736< 0,4656365< 0,466< 7/15
c) và d) của Trí sai nên sửa lại
c) (2x - 4)/7 < 0
⇒ 2x - 4 < 0 (vì 7 > 0)
⇒ 2x < 4
⇒ x < 2
d) (5x - 8)/-10 < 0
⇒ 5x - 8 > 0 (vì -10 < 0)
⇒ 5x > 8
⇒ x > 8/5
a) \(\dfrac{x-2}{45}>0\Rightarrow x-2>0\Rightarrow x>2\)
b) \(\dfrac{x+3}{-2}>0\Rightarrow x+3< 0\Rightarrow x< -3\)
c) \(\dfrac{2x-4}{7}< 0\Rightarrow2x-4>0\Rightarrow2x>4\Rightarrow x>2\)
d) \(\dfrac{5x-8}{10}< 0\Rightarrow5x-8< 0\Rightarrow5x< 8\Rightarrow x< \dfrac{8}{5}\)
Từ gt của đề bài :
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{y+z+t}\text{=}\dfrac{y}{z+t+x}\text{=}\dfrac{z}{x+y+t}\text{=}\dfrac{t}{x+y+z}\text{=}\dfrac{x+y+z+t}{3.\left(x+y+z+t\right)}\left(\cdot\right)\)
Xét TH : \(x+y+z+t\text{=}0\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z\text{=}-\left(x+t\right)\\z+t\text{=}-\left(x+y\right)\\x+t\text{=}-\left(y+z\right)\end{matrix}\right.\)
Do đó : \(P\text{=}-1+-1+-1+-1\)
\(P\text{=}-4\in Z\)
TH : \(x+y+z+t\ne0\)
\(\Rightarrow\left(\cdot\right)\text{=}\dfrac{1}{3}\)
Do đó : \(\dfrac{x}{y+z+t}\text{=}\dfrac{1}{3}\Rightarrow3x\text{=}y+z+t\)
\(\Rightarrow4x\text{=}x+y+z+t\)
\(CMTT:\left\{{}\begin{matrix}4y\text{=}x+y+z+t\\4z\text{=}x+y+z+t\\4t\text{=}x+y+z+t\end{matrix}\right.\)
Mà : \(\dfrac{x}{y+z+t}\text{=}\dfrac{y}{x+z+t}\text{=}\dfrac{z}{x+y+t}\text{=}\dfrac{t}{x+y+z}\)
\(\Rightarrow4x\text{=}4y\text{=}4z\text{=}4t\)
\(\Rightarrow x\text{=}y\text{=}z\text{=}t\)
Do đó : \(P\text{=}4\in Z\)
\(\Rightarrowđpcm\)
Kham khảo :
https://olm.vn/cau-hoi/cho-cac-so-thuc-xyzt-thoa-mandfracxyztdfracyztxdfracztxydfractxyz-cmr-p-dfracxyztdfracyztx.8377111224063.
Bạn vuốt xuống dưới để xem đáp án nha.