bài giảng hay
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ta có:
AB=DC mà AE=1/2 AB, KC= 1/2 DC
=>AE=KC
Xét tứ giác AECK, ta có:
AE//KC(AB//KC và AE thuộc AB và KC thuộc DC)
=>tứ giác AECK là hình bình hành.
b) chỗ DE vuông góc CE có đúng không vậy để mai mình làm tiếp
\(x^5\) - 2\(x^4\) - (y2 + 3)\(x\) + 2y2 - 2 = 0
(\(x^5\) - 2\(x^4\))- (y2 + 3)\(x\) + 2.(y2 + 3) - 8 = 0
\(x^4\).(\(x\) - 2) - (y2 + 3).(\(x\) - 2) - 8 = 0
(\(x\) - 2).(\(x^4\) - y2 - 3) = 8
8 = 23; Ư(8) = {-8; - 4; -2; - 1; 1; 2; 4; 8}
Lập bảng ta có:
\(x-2\) | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
\(x\) | -6 | -2 | 0 | 1 | 3 | 4 | 6 | 10 |
\(x^4\) - y2 - 3 | -1 | -2 | -4 | -8 | 8 | 4 | 2 | 1 |
y | \(\pm\)\(\sqrt{1294}\) | \(\pm\)\(15\) | \(\pm\)1 | \(\pm\)\(\sqrt{6}\) | y2 = -10 (ktm) | \(\pm\)\(\sqrt{249}\) | \(\pm\)\(\sqrt{1291}\) | \(\pm\)\(\sqrt{9996}\) |
vì \(x\); y nguyên nên theo bảng trên ta có các cặp \(x\); y thỏa mãn đề bài là:
(\(x\); y) = (0; -1;); (0; 1)
Lời giải:
a. $(x-2)^3+(x+2)^3-6x(x+2)(x-2)$
$=x^3-6x^2+12x-8+(x^3+6x^2+12x+8)-6x(x^2-4)$
$=2x^3+24x-6x^3+24x=-4x^3+48x$
b.
$(2x-y)^3+(2x+y)^3$
$=8x^3-12x^2y+6xy^2-y^3+8x^3+12x^2y+6xy^2+y^3$
$=16x^3+12xy^2$
c.
$(x-2)(x+2)-(x^2+2x+4)(x-2)$
$=(x^2-4)-(x^3-2^3)=x^2-4-x^3+8=x^2-x^3+4$
Lời giải:
a. $99^3+1+3(99^2+99)=99^3+3.99^2.1+3.99.1^2+1^3=(99+1)^3=100^3=1000000$
b. $11^3-1-3(11^2-11)=11^3-3.11^2.1+3.11.1^2-1^3=(11-1)^3=10^3=1000$
a) \(70a+84b-20ab-24b^2\)
\(=\left(70a+84b\right)-\left(20ab+24b^2\right)\)
\(=14\left(5a+6b\right)-4b\left(5a+6b\right)\)
\(=\left(5a+6b\right)\left(14-4b\right)\)
\(=2\left(5a+6b\right)\left(7-2b\right)\)
b) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)
\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xyz+xz^2\right)+\left(xyz+y^2z+yz^2\right)\)
\(=xy\left(x+y+z\right)+xz\left(x+y+z\right)+yz\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(xy+yz+xz\right)\)
c) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)
\(=\left(x^2y+xy^2\right)+\left(xz^2+yz^2\right)+\left(x^2z+2xyz+y^2z\right)\)
\(=xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x^2+2xy+y^2\right)\)
\(=xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x+y\right)^2\)
\(=\left(x+y\right)\left[xy+z^2+z\left(x+y\right)\right]\)
\(=\left(x+y\right)\left(xy+z^2+xz+yz\right)\)
\(=\left(x+y\right)\left[\left(xy+yz\right)+\left(xz+z^2\right)\right]\)
\(=\left(x+y\right)\left[y\left(x+z\right)+z\left(x+z\right)\right]\)
\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
a, 70a + 84b - 20ab - 24b2
= 14.(5a + 6b) - 4b(5a + 6b)
= (5a + 6b).(14 - 4b)
a)Áp suất ở dưới pittong nhỏ là: \(\dfrac{10m_2}{S_2}=\dfrac{10m_1}{S_1}+10D\cdot h\)
\(\Rightarrow\dfrac{10m_2}{25\cdot10^{-4}}=\dfrac{10\cdot1}{50\cdot10^{-4}}+10\cdot1000\cdot0,1\Rightarrow m_2=0,75kg=750g\)
b)Khi đặt lên pittong bên trái một lượng \(m=300g=0,3kg\) thì nó di chuyển xuống dưới một đoạn:
\(\dfrac{10\left(m_2+m\right)}{S_2}=\dfrac{10m_1}{S_1}+10D\cdot\Delta h\)
\(\Rightarrow\dfrac{10\cdot\left(0,75+0,3\right)}{25\cdot10^{-4}}=\dfrac{10\cdot1}{50\cdot10^{-4}}+10\cdot1000\cdot\Delta h\)
\(\Rightarrow\Delta h=0,22m=22cm\)
Olm chào em, olm cảm ơn đánh giá của em về chất lượng của bài giảng, đồng thời olm cũng cảm ơn sự tin tưởng, ủng hộ, lựa chọn và đồng hành của em cùng olm trong thời gian qua.
em có đánh giá lúc nào đâu cô