\(\hept{\begin{cases}\frac{1}{x-2}=0.2\\\frac{1}{y-2}=0.2\end{cases}}\)
giải tìm x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LG a
√18(√2−√3)2;18(2−3)2;
Phương pháp giải:
+ √ab=√a.√bab=a.b, với a, b≥0a, b≥0.
+ |a|=a|a|=a, nếu a≥0a≥0
|a|=−a|a|=−a nếu a<0a<0.
+ Sử dụng định lí so sánh hai căn bậc hai số học: Với hai số a, ba, b không âm, ta có:
a<b⇔√a<√ba<b⇔a<b
Lời giải chi tiết:
Ta có:
√18(√2−√3)2=√18.√(√2−√3)218(2−3)2=18.(2−3)2
=√9.2.|√2−√3|=√32.2.|√2−√3|=9.2.|2−3|=32.2.|2−3|
=3√2.|√2−√3|=3√2(√3−√2)=32.|2−3|=32(3−2)
=3√2.3−3(√2)2=32.3−3(2)2
=3√6−3.2=3√6−6=36−3.2=36−6.
(Vì 2<3⇔√2<√3⇔√2−√3<02<3⇔2<3⇔2−3<0
Do đó: |√2−√3|=−(√2−√3)=−√2+√3|2−3|=−(2−3)=−2+3=√3−√2=3−2).
LG b
ab√1+1a2b2ab1+1a2b2
Phương pháp giải:
+ √ab=√a.√bab=a.b, với a, b≥0a, b≥0.
+ √ab=√a√bab=ab, với a≥0, b>0a≥0, b>0.
+ |a|=a|a|=a, nếu a≥0a≥0
|a|=−a|a|=−a nếu a<0a<0.
Lời giải chi tiết:
Ta có:
ab√1+1a2b2=ab√a2b2a2b2+1a2b2=ab√a2b2+1a2b2ab1+1a2b2=aba2b2a2b2+1a2b2=aba2b2+1a2b2
=ab√a2b2+1√a2b2=ab√a2b2+1√(ab)2=aba2b2+1a2b2=aba2b2+1(ab)2
=ab√a2b2+1|ab|=aba2b2+1|ab|
Nếu ab>0ab>0 thì |ab|=ab|ab|=ab
⇒ab√a2b2+1|ab|=ab√a2b2+1ab=√a2b2+1⇒aba2b2+1|ab|=aba2b2+1ab=a2b2+1.
Nếu ab<0ab<0 thì |ab|=−ab|ab|=−ab
⇒ab√a2b2+1|ab|=ab√a2b2+1−ab=−√a2b2+1⇒aba2b2+1|ab|=aba2b2+1−ab=−a2b2+1.
LG c
√ab3+ab4ab3+ab4
Phương pháp giải:
+ √ab=√a.√bab=a.b, với a, b≥0a, b≥0.
+ √ab=√a√bab=ab, với a≥0, b>0a≥0, b>0.
+ |a|=a|a|=a, nếu a≥0a≥0
|a|=−a|a|=−a nếu a<0a<0.
Lời giải chi tiết:
Ta có:
√ab3+ab4=√a.bb3.b+ab4=√abb4+ab4ab3+ab4=a.bb3.b+ab4=abb4+ab4
=√ab+ab4=√ab+a√(b2)2=√ab+a|b2|=√ab+ab2=ab+ab4=ab+a(b2)2=ab+a|b2|=ab+ab2.
(Vì b2>0b2>0 với mọi b≠0b≠0 nên |b2|=b2|b2|=b2).
LG d
a+√ab√a+√ba+aba+b
Phương pháp giải:
+ √ab=√a.√bab=a.b, với a, b≥0a, b≥0.
+ √ab=√a√bab=ab, với a≥0, b>0a≥0, b>0.
+ |a|=a|a|=a, nếu a≥0a≥0
|a|=−a|a|=−a nếu a<0a<0.
Lời giải chi tiết:
Ta có:
a+√ab√a+√b=(√a)2+√a.√b√a+√b=√a(√a+√b)√a+√ba+aba+b=(a)2+a.ba+b=a(a+b)a+b
=√a=a.
Cách khác:
a+√ab√a+√b=(a+√ab)(√a−√b)(√a+√b)(√a−√b)=a√a−a√b+√ab.√a−√ab.√b(√a)2−(√b)2=a√a−a√b+a√b−b√aa−b=a√a−b√aa−b=√a(a−b)a−b=√a
a)
b) . Rút gọn hơn, ta có kết quả
+) thì .
+) thì .
c) .
d) Cách 1.
.
+ Ta có:
2√6−√5=2(√6+√5)(√6−√5)(√6+√5)26−5=2(6+5)(6−5)(6+5)
=2(√6+√5)(√6)2−(√5)2=2(√6+√5)6−5=2(6+5)(6)2−(5)2=2(6+5)6−5
=2(√6+√5)1=2(√6+√5)=2(6+5)1=2(6+5).
+ Ta có:
3√10+√7=3(√10−√7)(√10+√7)(√10−√7)310+7=3(10−7)(10+7)(10−7)
=3(√10−√7)(√10)2−(√7)2=3(10−7)(10)2−(7)2=3(√10−√7)10−7=3(10−7)10−7
=3(√10−√7)3=√10−√7=3(10−7)3=10−7.
+ Ta có:
1√x−√y=1.(√x+√y)(√x−√y)(√x+√y)1x−y=1.(x+y)(x−y)(x+y)
=√x+√y(√x)2−(√y)2=√x+√yx−y=x+y(x)2−(y)2=x+yx−y
+ Ta có:
2ab√a−√b=2ab(√a+√b)(√a−√b)(√a+√b)2aba−b=2ab(a+b)(a−b)(a+b)
=2ab(√a+√b)(√a)2−(√b)2=2ab(√a+√b)a−b=2ab(a+b)(a)2−(b)2=2ab(a+b)a−b.
\(\frac{2}{\sqrt{6}-\sqrt{5}}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{6-5}=2\left(\sqrt{6}+\sqrt{5}\right)\)
\(\frac{3}{\sqrt{10}+\sqrt{7}}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{\left(\sqrt{10}-\sqrt{7}\right)\left(\sqrt{10}+\sqrt{7}\right)}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{10-7}=\sqrt{10}-\sqrt{7}\)
\(\frac{1}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}+\sqrt{y}}{x-y}\)
\(\frac{2ab}{\sqrt{a}-\sqrt{b}}=\frac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\)
\(\hept{\begin{cases}\frac{1}{x-2}=0,2\\\frac{1}{y-2}=0,2\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{x-2}=\frac{1}{5}\\\frac{1}{y-2}=\frac{1}{5}\end{cases}}}\)ĐK : \(x;y\ne2\)
\(\Leftrightarrow\hept{\begin{cases}x-2=5\left(1\right)\\y-2=5\left(2\right)\end{cases}}\)
Từ phương trình (1) \(\Rightarrow x=5+2=7\)( tmđk )
Từ phương trinh (2) \(\Rightarrow y=5+2=7\)( tmđk )
Vậy hệ phương trình có một nghiệm ( x ; y ) = ( 7 ; 7 )