K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2021

\(\hept{\begin{cases}\frac{1}{x-2}=0,2\\\frac{1}{y-2}=0,2\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{x-2}=\frac{1}{5}\\\frac{1}{y-2}=\frac{1}{5}\end{cases}}}\)ĐK : \(x;y\ne2\)

\(\Leftrightarrow\hept{\begin{cases}x-2=5\left(1\right)\\y-2=5\left(2\right)\end{cases}}\)

Từ phương trình (1) \(\Rightarrow x=5+2=7\)( tmđk )

Từ phương trinh (2) \(\Rightarrow y=5+2=7\)( tmđk )

Vậy hệ phương trình có một nghiệm ( x ; y ) = ( 7 ; 7 ) 

24 tháng 4 2021

trương trình phim hoạt hình phép thuật winx

24 tháng 4 2021

LG a

√18(√2−√3)2;18(2−3)2;

Phương pháp giải:

+ √ab=√a.√bab=a.b,  với a, b≥0a, b≥0.

+ |a|=a|a|=a,  nếu a≥0a≥0 

     |a|=−a|a|=−a  nếu a<0a<0.

+ Sử dụng định lí so sánh hai căn bậc hai số học:  Với hai số a, ba, b không âm, ta có:

a<b⇔√a<√ba<b⇔a<b

Lời giải chi tiết:

Ta có:

√18(√2−√3)2=√18.√(√2−√3)218(2−3)2=18.(2−3)2

                               =√9.2.|√2−√3|=√32.2.|√2−√3|=9.2.|2−3|=32.2.|2−3|

                               =3√2.|√2−√3|=3√2(√3−√2)=32.|2−3|=32(3−2)

                               =3√2.3−3(√2)2=32.3−3(2)2

                               =3√6−3.2=3√6−6=36−3.2=36−6.

(Vì  2<3⇔√2<√3⇔√2−√3<02<3⇔2<3⇔2−3<0

Do đó: |√2−√3|=−(√2−√3)=−√2+√3|2−3|=−(2−3)=−2+3=√3−√2=3−2).

LG b

ab√1+1a2b2ab1+1a2b2

Phương pháp giải:

+ √ab=√a.√bab=a.b,  với a, b≥0a, b≥0.

+ √ab=√a√bab=ab,  với a≥0, b>0a≥0, b>0.

+ |a|=a|a|=a,  nếu a≥0a≥0 

     |a|=−a|a|=−a  nếu a<0a<0.

Lời giải chi tiết:

Ta có: 

ab√1+1a2b2=ab√a2b2a2b2+1a2b2=ab√a2b2+1a2b2ab1+1a2b2=aba2b2a2b2+1a2b2=aba2b2+1a2b2

                         =ab√a2b2+1√a2b2=ab√a2b2+1√(ab)2=aba2b2+1a2b2=aba2b2+1(ab)2

                         =ab√a2b2+1|ab|=aba2b2+1|ab|

Nếu ab>0ab>0 thì |ab|=ab|ab|=ab

          ⇒ab√a2b2+1|ab|=ab√a2b2+1ab=√a2b2+1⇒aba2b2+1|ab|=aba2b2+1ab=a2b2+1.

Nếu ab<0ab<0 thì |ab|=−ab|ab|=−ab

           ⇒ab√a2b2+1|ab|=ab√a2b2+1−ab=−√a2b2+1⇒aba2b2+1|ab|=aba2b2+1−ab=−a2b2+1.

LG c

√ab3+ab4ab3+ab4

Phương pháp giải:

+ √ab=√a.√bab=a.b,  với a, b≥0a, b≥0.

+ √ab=√a√bab=ab,  với a≥0, b>0a≥0, b>0.

+ |a|=a|a|=a,  nếu a≥0a≥0 

     |a|=−a|a|=−a  nếu a<0a<0.

Lời giải chi tiết:

Ta có: 

√ab3+ab4=√a.bb3.b+ab4=√abb4+ab4ab3+ab4=a.bb3.b+ab4=abb4+ab4

=√ab+ab4=√ab+a√(b2)2=√ab+a|b2|=√ab+ab2=ab+ab4=ab+a(b2)2=ab+a|b2|=ab+ab2.

(Vì b2>0b2>0 với mọi b≠0b≠0 nên |b2|=b2|b2|=b2).

LG d

a+√ab√a+√ba+aba+b

Phương pháp giải:

+ √ab=√a.√bab=a.b,  với a, b≥0a, b≥0.

+ √ab=√a√bab=ab,  với a≥0, b>0a≥0, b>0.

+ |a|=a|a|=a,  nếu a≥0a≥0 

     |a|=−a|a|=−a  nếu a<0a<0.

Lời giải chi tiết:

Ta có:

a+√ab√a+√b=(√a)2+√a.√b√a+√b=√a(√a+√b)√a+√ba+aba+b=(a)2+a.ba+b=a(a+b)a+b

=√a=a.

Cách khác:

a+√ab√a+√b=(a+√ab)(√a−√b)(√a+√b)(√a−√b)=a√a−a√b+√ab.√a−√ab.√b(√a)2−(√b)2=a√a−a√b+a√b−b√aa−b=a√a−b√aa−b=√a(a−b)a−b=√a

28 tháng 5 2021

a) 23.(3−2)=6−26.

b) ab|ab|1+a2 b2. Rút gọn hơn, ta có kết quả

+) ab>0 thì ab1+1a2b2=1+a2 b2.

+) ab<0 thì ab1+1a2b2=−1+a2 b2.
c) 1b2ab+a.
d) Cách 1.

a+aba+b=(a+ab)(a−b)(a+b)(a−b).

24 tháng 4 2021

+ Ta có:

2√6−√5=2(√6+√5)(√6−√5)(√6+√5)26−5=2(6+5)(6−5)(6+5)

                   =2(√6+√5)(√6)2−(√5)2=2(√6+√5)6−5=2(6+5)(6)2−(5)2=2(6+5)6−5

                   =2(√6+√5)1=2(√6+√5)=2(6+5)1=2(6+5).

+ Ta có:

3√10+√7=3(√10−√7)(√10+√7)(√10−√7)310+7=3(10−7)(10+7)(10−7)

                    =3(√10−√7)(√10)2−(√7)2=3(10−7)(10)2−(7)2=3(√10−√7)10−7=3(10−7)10−7

                    =3(√10−√7)3=√10−√7=3(10−7)3=10−7.

+ Ta có:

1√x−√y=1.(√x+√y)(√x−√y)(√x+√y)1x−y=1.(x+y)(x−y)(x+y)

=√x+√y(√x)2−(√y)2=√x+√yx−y=x+y(x)2−(y)2=x+yx−y

+ Ta có:

2ab√a−√b=2ab(√a+√b)(√a−√b)(√a+√b)2aba−b=2ab(a+b)(a−b)(a+b)

=2ab(√a+√b)(√a)2−(√b)2=2ab(√a+√b)a−b=2ab(a+b)(a)2−(b)2=2ab(a+b)a−b.

24 tháng 4 2021

\(\frac{2}{\sqrt{6}-\sqrt{5}}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{6-5}=2\left(\sqrt{6}+\sqrt{5}\right)\)

\(\frac{3}{\sqrt{10}+\sqrt{7}}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{\left(\sqrt{10}-\sqrt{7}\right)\left(\sqrt{10}+\sqrt{7}\right)}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{10-7}=\sqrt{10}-\sqrt{7}\)

\(\frac{1}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}+\sqrt{y}}{x-y}\)

\(\frac{2ab}{\sqrt{a}-\sqrt{b}}=\frac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\)