Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt phụ \(\sqrt{ \left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\)có
\(VT=\frac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}+\frac{y}{y+\sqrt{\left(y+x\right)\left(z+y\right)}}+\frac{z}{z+\sqrt{\left(z+x\right)\left(y+z\right)}}\)
\(\le\frac{x}{x+\sqrt{xz}+\sqrt{xy}}+\frac{y}{y+\sqrt{yz}+\sqrt{yx}}+\frac{z}{z+\sqrt{zx}+\sqrt{zy}}\)
\(=\frac{x}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}+\frac{y}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}+\frac{z}{\sqrt{z}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}\)
\(=\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)
bạn tham khảo nha : https://loigiaihay.com/bai-76-trang-41-sgk-toan-9-tap-1-c44a26988.html
a, \(\sqrt{\left(2x-1\right)^2}=3\Leftrightarrow\left|2x-1\right|=3\)
Với \(x\ge\frac{1}{2}\)pt có dạng : \(2x-1=3\Leftrightarrow x=2\)( tm )
Với \(x< \frac{1}{2}\)pt có dạng : \(-2x+1=3\Leftrightarrow x=-1\)( tm )
Vậy tập nghiệm của pt là S = { -1 ; 2 }
b, \(\frac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\)ĐK : \(x\ge0\)
\(\Leftrightarrow\frac{2}{3}\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\Leftrightarrow\frac{1}{3}\sqrt{15x}=2\)
\(\Leftrightarrow\sqrt{15x}=6\)bình phương 2 vế : \(\Leftrightarrow15x=36\Leftrightarrow x=\frac{36}{15}=\frac{12}{5}\)( tm )
Vậy tập nghiệm của pt là S = { 12/5 }
a)
Thay ta được:
.
b) Điều kiện:
+) , ta được: .
+) , ta được: .
Với . Thay vào biểu thức ta có:
Vậy giá trị biểu thức tại là .
c)
+) Với , ta được: .
+) Với , ta được: .
Vì . Thay vào biểu thức ta có: .
Vậy giá trị của biểu thức tại là .
d)
+) Với , ta có: .
+) Với , ta có: .
Vì . Thay vào biểu thức , ta có: .
Giá trị của biểu thức tại là .
\(a,\left(\sqrt{8}-3.\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}\)
\(=\sqrt{8}.\sqrt{2}-3\sqrt{2}.\sqrt{2}+\sqrt{10}.\sqrt{2}-\sqrt{5}\)
\(=\sqrt{16}-3.2+\sqrt{20}-\sqrt{5}\)
\(=\sqrt{4^2}-6+\sqrt{2^2.5}-\sqrt{5}\)
\(=2-6+2\sqrt{5}-\sqrt{5}\)
\(=-2+\sqrt{5}\)
\(b,\)
\(0,2\sqrt{\left(-10^2\right).3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}\)
\(=0,2.\left|-10\right|.\sqrt{3}+2\left|\sqrt{3}-\sqrt{5}\right|\)
\(=0,2.10.\sqrt{3}+2\left(\sqrt{5}-\sqrt{3}\right)\)
\(=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}\)
\(=2\sqrt{5}\)
a) (√8 - 3√2 + √10)√2 - √5
= (√22.2 - 3√2 + √5.2)√2 - √5
= (2√2 - 3√2 + √5.√2)√2 - √5
= (2 - 3 + √5)√2.√2 - √5
= (-1 + √5).2 - √5
= -2 + 2√5 - √5
= -2 + √5
b) 0,2√((-10)2.3) + 2√(√3 - √52)
= 0,2.10√3 + 2|√3 - √5|
= 2√3 + 2(√5 - √3)
= 0,2.10.√3 + 2|√3 - √5|
= 2√3 + 2(√5 - √3)
= 2√3 + 2√5 - 2√3
= 2√5
xxxxxxxxxxxxxx = ?