K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2023

ĐKXĐ : \(x\ne\left\{2;3;4;5;6\right\}\)

\(\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{4}{\left(x+2\right).\left(x+6\right)}=\dfrac{1}{8}\)

\(\Leftrightarrow\left(x+2\right).\left(x+6\right)=32\)

\(\Leftrightarrow x^2+8x-20=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(\text{loại}\right)\\x=-10\end{matrix}\right.\Leftrightarrow x=-10\)

Vậy tập nghiệm phương trình S = {10}

20 tháng 2 2023

a) x - 5 = 7 - x 

<=> 2x = 12

<=> x = 6

Vậy tập nghiệm phương trình S = {6}

b) 3x - 15 = 2x(x - 5)

<=> 3(x - 5) = 2x(x - 5)

<=> (2x - 3)(x - 5) = 0

<=> \(\left[{}\begin{matrix}2x-3=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=5\end{matrix}\right.\)

Tập nghiệm phương trình \(S=\left\{\dfrac{3}{2};5\right\}\)

19 tháng 2 2023

Chia số học sinh này thành 3 nhóm:

- Nhóm 1: Xe thứ nhất, xe thứ sáu

- Nhóm 2: Xe thứ hai, xe thứ năm

- Nhóm 3: Xe thứ ba, xe thứ tư

Vì theo dữ kiện đề bài, thì tổng số HS xe thứ nhất và xe thứ sáu = Tống số học sinh xe thứ hai và xe thứ 5 = Tổng số học sinh xe thứ ba và xe thứ tư

Vậy, mỗi nhóm có:

330:3= 110(học sinh)

Anh dự đoán trên mỗi xe du lịch này có số học sinh bằng nhau.

Vậy số HS (có thể) có trên từng xe là:

110:2= 55(học sinh)

19 tháng 2 2023

`(x^2+1)^2+3x(x^2+1)+2x^2=0`

`<=>(x^2+1)^2+2(x^2+1). 3/2x+9/4x^2+-1/4x^2=0`

`<=>(x^2+1+3/2x)^2-1/4x^2=0`

`<=>(x^2+1+3/2x-1/2x)(x^2+1+3/2x+1/2x)=0`

`<=>(x^2+x+1)(x^2+2x+1)=0`

`<=>[(x+1/2)^2+3/4](x+1)^2=0`

  `=>x+1=0`

`<=>x=-1`

DT
20 tháng 2 2023

Đổi : `22` phút `=22/60=11/30` (giờ)

Gọi độ dài quãng đường AB là : `x` (km) (x>0)

+) Thời gian đi là : \(\dfrac{x}{15}\left(h\right)\)

+) Thời gian về là : \(\dfrac{x}{12}\left(h\right)\)

Mà thời gian về nhiều hơn thời gian đi `22` phút, nên ta có phương trình :

\(\dfrac{x}{12}-\dfrac{x}{15}=\dfrac{11}{30}\\ < =>\dfrac{15x}{180}-\dfrac{12x}{180}=\dfrac{66}{180}\\ =>15x-12x=66\\ < =>3x=66\\ < =>x=22\left(TMDK\right)\)

Vậy quãng đường AB dài 22km

DT
19 tháng 2 2023

a)

`2x+4=x-1`

`<=>2x-x=-4-1`

`<=>x=-5`

Vậy phương trình có tập nghiệm là : \(S=\left\{-5\right\}\)

b)

`2x(x-3)-5(x-3)=0`

`<=>(x-3)(2x-5)=0`

`=>x-3=0` hoặc `2x-5=0`

`<=>x=3` hoặc `x=5/2`

Vậy tập nghiệm phương trình là : \(S=\left\{3;\dfrac{5}{2}\right\}\)

c)

\(\dfrac{2x}{x+1}=\dfrac{x^2-x+8}{\left(x+1\right)\left(x-4\right)}\left(x\ne\left\{-1;4\right\}\right)\\ < =>\dfrac{2x\left(x-4\right)}{\left(x+1\right)\left(x-4\right)}=\dfrac{x^2-x+8}{\left(x+1\right)\left(x-4\right)}\\ =>2x\left(x-4\right)=x^2-x+8\\ < =>2x^2-8x=x^2-x+8\\ < =>2x^2-x^2-8x+x-8=0\\ < =>x^2-7x-8=0\\ < =>\left(x-8\right)\left(x+1\right)=0\\ =>\left[{}\begin{matrix}x=8\left(N\right)\\x=-1\left(L\right)\end{matrix}\right.\)

Vậy tập nghiệm phương trình là : \(S=\left\{8\right\}\)

 

19 tháng 2 2023

`x^2-4x+y^2-6y+15=2`

`<=>x^2-4x+4+y^2-6y+9=0`

`<=>(x-2)^2+(y-3)^2=0`

 `=>x-2=0` và `y-3=0`

`<=>x=2` và `y=3`

25 tháng 2 2023

Ta có: 

�2−4�+�2−6�+15=2⇔�2−4�+4+�2−6�+9=0⇔(�−2)2+(�−3)2=0⇔{(�−2)2=0(�−3)2=0⇔{�=2�=3

(vì (�−2)2≥0 với mọi �∈�(�−3)2≥0 với mọi �∈�).

Vậy �=2�=3

20 tháng 2 2023

A A B C H D I

a) Vì tam giác ABC vuông tại A

Áp dụng định lý Pytago :

AB2 + AC2 = BC2

<=> 62 + 82 = BC2

<=> BC = 10

BD tia phân giác góc B nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{3}{5}\)(1)

mà AD + DC = AC = 8 (2) 

Từ (1)(2) ta tìm được AD = 3 ; DC = 5

=> P = AD.DC = 3.5 = 15 

b) Mà \(BD\cap AH=\left\{I\right\}\)

\(\Rightarrow\dfrac{AI}{IH}=\dfrac{AB}{BH}\)(3)

Xét tam giác ABH và tam giác ABC có

\(\widehat{ABC}\) chung ; \(\widehat{AHB}=\widehat{BAC}=90^{\text{o}}\) 

nên \(\Delta CBA\sim\Delta ABH\)

\(\Rightarrow\dfrac{BH}{AB}=\dfrac{AB}{BC}\)

\(\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\)( kết hợp (1);(3))

c) Tương tự dễ thấy

\(\Delta BIH\sim\Delta BDA\) (g-g)

=> \(\widehat{BDA}=\widehat{BIH}\)

lại có \(\widehat{BIH}=\widehat{AID}\) (đối đỉnh)

nên \(\widehat{BDA}=\widehat{AID}\) => Tam giác AID cân tại A

25 tháng 2 2023

loading...

a) Xét tam giác ��� vuông tại 

��2=��2+��2 (định lí Pythagoras)

⇔��2=62+82=100⇔��=10(��)

Xét tam giác ��� phân giác �� có: 

����=����⇔����+��=����+�� 

����=����+��⇔��=3(��)

suy ra ��=5(��).

b) Xét tam giác ��� phân giác �� có: ����=����.

Xét △��� và △��� có: 

���^=���^ (góc chung)

���^=���^(=90∘)

suy ra △���∼△��� (g.g).

Suy ra ����=���� 

⇒����=����

Mà ta lại có ����=���� nên ����=����

c) Ta có △���∼△��� (g.g) 

suy ra ����=����⇒��.��=��.��.

���^=���^ (hai góc tương ứng) 

mà ���^=���^ (hai góc đối đỉnh)

suy ra ���^=���^ 

do đó tam giác ��� cân tại .