K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{3x-2}{6}-5=\dfrac{3-2\left(x+7\right)}{4}\)

=>\(\dfrac{3x-32}{6}=\dfrac{3-2x-14}{4}\)

=>\(\dfrac{3x-32}{6}=\dfrac{-2x-11}{4}\)

=>2(3x-32)=3(-2x-11)

=>6x-64=-6x-33

=>12x=31

=>\(x=\dfrac{31}{12}\)

29 tháng 4

thách trả lời đc :))

 

29 tháng 4

quá easy luôn 1+1=3

vì1+1=3 cs thế thôi 

AH
Akai Haruma
Giáo viên
29 tháng 4

Lời giải:
Gọi giá tiền 1 chiếc bánh ngọt ban đầu là $a$ (đồng). Giá từ cái bánh thứ 5 đổ đi là $0,9a$ đồng.

Giá tiền bạn Lan mua 44 cái bánh:

$[4a+0,9a(44-4)].0,95=684$

$\Leftrightarrow 40a=684:0,95=720$

$\Leftrightarrow a=18$ (nghìn đồng)

Số tiền bạn Lan trả nếu chưa được giảm thêm 5%:

$684:0,95=720$ (nghìn đồng)

AH
Akai Haruma
Giáo viên
29 tháng 4

Lời giải:

$S=3+3^2+3^3+3^4+....+3^{2024}$

$A=3+3^2+(3^3+3^4+3^5)+(3^6+3^7+3^8)+....+(3^{2022}+3^{2023}+3^{2024})$

$=12+3^3(1+3+3^2)+3^6(1+3+3^2)+.....+3^{2022}(1+3+3^2)$

$=12+(1+3+3^2)(3^3+3^6+....+3^{2022})$

$=12+13(3^3+3^6+....+3^{2022})$ chia 13 dư 12

Vậy $S$ không chia hết cho 13. Bạn xem lại đề.

29 tháng 4

\(S=3+3^2+3^3+3^4+...+3^{2024}\)

\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2022}+3^{2023}+3^{2024}\right)\)

\(S=36+3^3.\left(3+3^2+3^3\right)+...+3^{2021}.\left(3+3^2+3^3\right)\)

\(S=36+3^3.36+...+3^{2021}.36\)

\(S=36.\left(1+3^3+...+3^{2021}\right)\)

Vì \(36⋮13\) nên \(36.\left(1+3^3+...+3^{2021}\right)⋮13\)

Vậy \(S⋮13\)

`#NqHahh`

Thời gian người đó đi hết quãng đường AB là:

9h30p-6h45p=2h45p=2,75(giờ)

Độ dài quãng đường AB là:

16x2,75=44(km)

4
456
CTVHS
29 tháng 4

 

Vì tứ là 4 tam là 3 

Tứ chia tam là tám chia tư nên

4 : 3 = 2

 

AH
Akai Haruma
Giáo viên
29 tháng 4

Lời giải:

Ký hiệu như hình vẽ:

Bán kính nửa đường tròn thứ nhất: $10+a$ (cm)

Bán kính nửa đường tròn số hai: $6+a+b$ (cm)

Bán kính nửa đường tròn thứ ba: $8+b$ (cm)

Vì 3 đường tròn này giống nhau nên:

$10+a=6+a+b$ và $6+a+b=8+b$

Với $10+a=6+a+b$

$\Rightarrow 10=6+b$

$b=10-6=4$ (cm)

Bán kính mỗi đường tròn: $8+b=8+4=12$ (cm)

Tổng diện tích 3 nửa đường tròn:

$12\times 12\times 3,14:2\times 3=678,24$ (cm2)

29 tháng 4

Giúp mk vs ạ

a: Xét ΔCHB vuông tại H và ΔCBA vuông tại B có

\(\widehat{HCB}\) chung

Do đó: ΔCHB~ΔCBA

b: 

Xét ΔAHB vuông tại H và ΔABC vuông tại B có

\(\widehat{HAB}\) chung

Do đó: ΔAHB~ΔABC

=>\(\dfrac{AH}{AB}=\dfrac{AB}{AC}\)

=>\(AB^2=AH\cdot AC\)

c: ΔABC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(AC=\sqrt{15^2+20^2}=25\left(cm\right)\)

ΔAHB~ΔABC

=>\(\dfrac{BH}{BC}=\dfrac{BA}{AC}\)

=>\(BH=\dfrac{AB\cdot BC}{AC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

d: Xét ΔBKH vuông tại K và ΔBHA vuông tại H có

\(\widehat{KBH}\) chung

Do đó: ΔBKH~ΔBHA

=>\(\dfrac{BK}{BH}=\dfrac{BH}{BA}\)

=>\(BH^2=BK\cdot BA\left(1\right)\)

Xét ΔBIH vuông tại I và ΔBHC vuông tại H có

\(\widehat{IBH}\) chung

Do đó: ΔBIH~ΔBHC

=>\(\dfrac{BI}{BH}=\dfrac{BH}{BC}\)

=>\(BH^2=BI\cdot BC\left(2\right)\)

Từ (1),(2) suy ra \(BK\cdot BA=BI\cdot BC\)

=>\(\dfrac{BK}{BC}=\dfrac{BI}{BA}\)

Xét ΔBKI vuông tại B và ΔBCA vuông tại B có

\(\dfrac{BK}{BC}=\dfrac{BI}{BA}\)

Do đó: ΔBKI~ΔBCA

e: ΔBCA vuông tại B

mà BM là đường trung tuyến

nên MB=MC

=>ΔMBC cân tại M

\(\widehat{NIB}+\widehat{NBI}=\widehat{MCB}+\widehat{MAB}=90^0\)

=>BM\(\perp\)IK tại N

ta có: \(BK\cdot BA=BH^2\)

=>\(BK\cdot15=12^2=144\)

=>BK=144/15=9,6(cm)

\(BI\cdot BC=BH^2\)

=>\(BI\cdot20=12^2=144\)

=>BI=7,2(cm)

Xét tứ giác BKHI có \(\widehat{BKH}=\widehat{BIH}=\widehat{KBI}=90^0\)

nên BKHI là hình chữ nhật

=>KI=BH=12(cm)

Xét ΔBIK vuông tại B có BN là đường cao

nên \(\left\{{}\begin{matrix}BN\cdot IK=BK\cdot BI\\KN\cdot KI=KB^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BN\cdot12=7,2\cdot9,6\\KN\cdot12=9,6^2\end{matrix}\right.\)

=>BN=5,76(cm); KN=7,68(cm)

ΔBKN vuông tại N

=>\(S_{BNK}=\dfrac{1}{2}\cdot NB\cdot NK=\dfrac{1}{2}\cdot5,76\cdot7,68=22,1184\left(cm^2\right)\)