Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x^2=a\left(a\ge0\right)\)
Khi đó PT tương đương: \(a^2-2\left(m+1\right)a+2m+1=0\) (1)
\(\Delta^'=\left[-\left(m+1\right)\right]^2-1\cdot\left(2m+1\right)=m^2+2m+1-2m-1=m^2\)
Mà \(\Delta^'=m^2\ge0\left(\forall m\right)\) => PT luôn có nghiệm
Để PT đề bài có 2 nghiệm phân biệt thì ta có 2TH sau:
TH1: PT(1) phải có 1 nghiệm dương, 1 nghiệm âm
Khi đó theo hệ thức viet thì \(2m+1< 0\Leftrightarrow m< -\frac{1}{2}\)
Khi đó a dương sẽ là giá trị thỏa mãn => \(\Rightarrow\hept{\begin{cases}x_1=\sqrt{a}\\x_2=-\sqrt{a}\end{cases}}\)
TH2: PT(1) có nghiệm kép dương
PT có nghiệm kép thì \(\Delta^'=0\Rightarrow m=0\)
Thay vào ta được: \(x^4-2x^2+1=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=0\Rightarrow x^2-1=0\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\left(tm\right)\)
Vậy \(\orbr{\begin{cases}m=0\\m< -\frac{1}{2}\end{cases}}\) thì PT có 2 nghiệm phân biệt
Giải \(\Delta\)
Vì x1,x2 là nghiệm của pt =>\(x_1^2-6x_1+2m-3=0;x_2-6x+2m-3=0\)
Áp dụng định lí vi -ét
\(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=2m-3\end{cases}}\)
Thay vào ... ta được
\(\left(0+x_1-1\right).\left(0+x_2-1\right)=2\)
\(=>x_1.x_2-\left(x_1+x_2\right)+1=2\)
\(2m-3-6+1=2=>m=5\)(t/m)
Vậy...
Gọi x1,x2x1,x2 là nghiệm của x2−mx−2=0(1)x2−mx−2=0(1)
→{x1+x2=mx1x2=−2→{x1+x2=mx1x2=−2
→⎧⎪ ⎪⎨⎪ ⎪⎩1x1+1x2=x1+x2x1x2=−m21x1.1x2=−12→{1x1+1x2=x1+x2x1x2=−m21x1.1x2=−12
→1x1,1x2→1x1,1x2 là nghiệm của phương trình
x2+m2x−12=0
a) \(C_2H_4+Br_2\rightarrow C_2H_4Br_2\)
\(C_2H_2+2Br_2\rightarrow C_2H_2Br_4\)
b) \(n_{Br_2}=\frac{22,4}{160}=0,14\left(mol\right)=n_{C_2H_4}+2n_{C_2H_2}\)
\(n_{C_2H_4}+n_{C_2H_2}=0,1\left(mol\right)\)
Suy ra \(n_{C_2H_4}=0,06\left(mol\right),n_{C_2H_2}=0,04\left(mol\right)\)
\(\%V_{C_2H_4}=60\%,\%V_{C_2H_2}=40\%\).
\(\)
\(PT\left(đk:x\ge1\right)< =>2\left(\frac{\sqrt{x-1}}{\sqrt{4}}-3\right)=2\frac{\sqrt{4x-4}}{\sqrt{9}}-\frac{1}{3}\)
\(< =>\frac{2\sqrt{x-1}}{2}-6=\frac{2.\sqrt{4}.\sqrt{x-1}}{3}-\frac{1}{3}\)
\(< =>\sqrt{x-1}-6=\frac{4}{3}\sqrt{x-1}-\frac{1}{3}\)
\(< =>\frac{4}{3}\sqrt{x-1}-\sqrt{x-1}-\frac{1}{3}+6=0\)
\(< =>\frac{\sqrt{x-1}}{3}+\frac{17}{3}=0\)
Do \(\sqrt{x-1}\ge0=>\frac{\sqrt{x-1}}{3}\ge0=>\frac{\sqrt{x-1}}{3}+\frac{17}{3}>0\)
=> pt vô nghiệm
ĐKXĐ : x ≥ 13
<=> \(2\sqrt{\frac{x-1}{4}-\frac{12}{4}}=2\sqrt{\frac{4\left(x-1\right)}{9}}-\frac{1}{3}\)
<=> \(2\sqrt{\frac{1}{4}\left(x-13\right)}=2\sqrt{\frac{4}{9}\left(x-1\right)}-\frac{1}{3}\)
<=> \(\sqrt{x-13}=\frac{4}{3}\sqrt{x-1}-\frac{1}{3}\)
F F đến đây tính bình phương hai vế nhưng lười quá ;-;
Gọi quãng đường AB là x (km) . Đk: x > 0
Vì vận tốc lúc đi của người đó là 30 km/h nên thời gian lúc đi của người đó là: \(\frac{x}{30}\)(h)
Vì vận tốc lúc về của người đó là 25 km/h nên thời gian lúc về của người đó là: \(\frac{x}{25}\)(h)
Vì khi đến B người đó nghỉ 20 phút = \(\frac{1}{3}\)h rồi quay về A nên thời gian cả đi cả về của người đó là 5h50 phút = \(\frac{35}{6}\) h
=> Ta có phương trình: \(\frac{x}{30}+\frac{x}{25}+\frac{1}{3}=\frac{35}{6}\)
\(\Leftrightarrow\frac{x}{30}+\frac{x}{25}=\frac{33}{6}\)
\(\Leftrightarrow\frac{5x}{150}+\frac{6x}{150}=\frac{825}{150}\)
\(\Rightarrow5x+6x=825\)
\(\Leftrightarrow11x=825\)
\(\Leftrightarrow x=75\left(tmđk\right)\)
Vậy quãng đường AB dài 75km
Cách dòng vì ..... ra nha, tại mik quên không cách nên là nó bị dính với điều kiện á