K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2022

\(-x^4y^2x^2x^2\left(-y\right)^3=x^8y^5\)

17 tháng 3 2022

Lời giải:

a) Ta có: {∠ABD=∠EBD(do BD là phân giác góc B)∠BAD=∠BED=900{∠ABD=∠EBD(do BD là phân giác góc B)∠BAD=∠BED=900

⇒1800−∠ABD−∠BAD=1800−∠EBD−∠BED⇒1800−∠ABD−∠BAD=1800−∠EBD−∠BED

⇔∠BDA=∠BDE⇔∠BDA=∠BDE

Xét tam giác ABDABD và EBDEBD có:

⎧⎪⎨⎪⎩BD chung∠ABD=∠EBD∠BDA=∠BDE⇒△ABD=△EBD(g.c.g){BD chung∠ABD=∠EBD∠BDA=∠BDE⇒△ABD=△EBD(g.c.g)

Ta có đpcm.

b) Theo phần a △ABD=△EBD⇒BA=BE△ABD=△EBD⇒BA=BE

Do đó tam giác BAEBAE cân tại BB

⇒∠BEA=∠BAE⇒∠BEA=∠BAE

Mà ∠BEA+∠BAE=1800−∠ABE=1800−600=1200∠BEA+∠BAE=1800−∠ABE=1800−600=1200

Suy ra ∠BEA=∠BAE=600=∠ABE∠BEA=∠BAE=600=∠ABE

Do đó tam giác ABEABE đều

c)

Có: cosˆABC=ABBC⇔cos600=5BC⇔12=5BCcos⁡ABC^=ABBC⇔cos⁡600=5BC⇔12=5BC

⇔BC=10⇔BC=10 (cm)

17 tháng 3 2022

bạn sai đề rồi bạn ơi =))

18 tháng 3 2022

1:B,2D,3:6

21 tháng 3 2022
W3ggtbufm7
18 tháng 3 2022

`Answer:`

Sửa đề phần c: Chứng minh KF//BC.

C H B A F K

a. Xét `\triangleAHB` và `\triangleAHC`

`AH` chung

`\hat{AHB}=\hat{AHC}=90^o`

`AB=AC`

`=>\triangleAHB=\triangleAHC(ch-cgv)`

b. Xét `\triangleFAH` và `\triangleKAH`

`AH` chung

`\hat{FAH}=\hat{KAH}`

`\hat{AFH}=\hat{AKH}=90^o`

`=>\triangleFAH=\triangleKAH(ch-gn)`

`=>HK=HF`

c. Theo phần b. `\triangleFAH=\triangleKAH`

`=>AF=AK`

`=>\triangleAFK` cân ở `A`

Ta có: `\triangleAFK` cân ở `A` và `\triangleABC` cân ở `A`

`=>\hat{AFK}=\hat{ABC}` mà hai góc này ở vị trí đồng vị \(\Rightarrow KF//BC\)

hình tự vẽ nhé.

xét: \(\Delta AHB\) VÀ   \(\Delta AHC\) CÓ:

\(\widehat{ABH}=\widehat{ACH}\)(DO TAM GIÁC ABC CÂN TẠI A)

\(AB=AC\)(DO TAM GIÁC ABC CÂN TẠI A)
\(\widehat{AHB}=\widehat{AHC}=90^0\)

\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-gn\right)\left(1\right)\)

b) TỪ (1)\(\Rightarrow BH=CH\)(2 cạnh tương ứng)

XÉT: \(\Delta KBH\)VÀ    \(\Delta FCH\) CÓ:

\(BH=CH\left(cmt\right)\)

​​\(\widehat{BKH}=\widehat{CFH}=90^0\)

\(\widehat{KBH}=\widehat{FCH}\left(\widehat{B}=\widehat{C}\right)\)

\(\Rightarrow\Delta KBH=\Delta FCH\left(ch-gn\right)\)

\(\Rightarrow HK=HF;BK=FC\)(2 cạnh tương ứng)(đpcm)

c) ta có:  \(AB=AC;;BK=FK\left(cmt\right)\)

\(\Rightarrow AB-BK=AC-FC\)

\(\Rightarrow AK=AF\Rightarrow\Delta AKF\) cân tại A

\(\Rightarrow\widehat{AKF}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)

lại có \(\Delta ABC\)cân tại A\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\left(3\right)\)

TỪ (2)VÀ (3)\(\Rightarrow\widehat{AKF}=\widehat{ABC}\left(=\frac{180^0-\widehat{A}}{2}\right)\)

​mà 2 góc này ở vị trí đồng vị \(\Rightarrow KF\\ BC\left(đpcm\right)\)

17 tháng 3 2022

MÌNH KHÔNG BIẾT XIN LỖI BẠN

17 tháng 3 2022

https://www.youtube.com/watch?v=LBNWehxbS2M

17 tháng 3 2022

\(|5x-2|=98\)

\(TH1:5x-2>0\Leftrightarrow x>\frac{2}{5}\)Khi đó \(|5x-2|=5x-2\)

Ta có:\(5x-2=98\)

\(\Leftrightarrow5x=100\)

\(\Leftrightarrow x=20\left(TM\right)\)

\(TH2:5x-2< 0\Leftrightarrow x< \frac{2}{5}\)Khi đó:\(5x-2=2-5x\)

Ta có:\(2-5x=98\)

\(\Leftrightarrow5x=-96\)

\(\Leftrightarrow x=-\frac{96}{5}\left(TM\right)\)

Vậy \(x\in\left\{-\frac{96}{5};20\right\}\)

17 tháng 3 2022

\(|5x-2|=98 \Leftrightarrow\orbr{\begin{cases}5x-2=98\\5x-2=-98\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=20\\x=-19,2\end{cases}}\)

17 tháng 3 2022

nưknx 

17 tháng 3 2022

a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E ta có:

Chung DB

Góc ABD = Góc EBD ( BD là tia phân giác của góc ABC)

⇒ Tam giác ABD = Tam giac EBD ( cạnh huyền = góc nhọn)

b)Ta có tam giác ABD = tam giác EBD ( theo a)

⇒AB = EB ( 2 cạnh tương ứng)

⇒ Tam giác ABE cân tại B ( Định nghĩa tam giác cân)

 

19 tháng 3 2022

a, Xét tam giác ABC cân tại A

có AH là đường cao 

đồng thời là đường phân giác, đường trung tuyến 

=> HB = HC ; ^BAH = ^CAH 

b, Ta có HB = BC/2 = 4 cm 

Xét tam giác AHB vuông tại H

\(AH=\sqrt{AB^2-HB^2}=3cm\)

c, Xét tam giác ADH và tam giác AEH 

AH _ chung 

^DAH = ^EAH (cmt) 

Vậy tam giác ADH = tam giác AEH (ch-cgv) 

=> DH = EH ( 2 cạnh tương ứng ) 

Vậy tam giác HDE cân tại H 

17 tháng 3 2022

`Answer:`

Ảnh mờ quá nên mình có làm sai đề thì bạn bảo nhé.

\(A=\frac{10^{2011}+1}{20^{2012}+1}\)

\(\Rightarrow10A=\frac{10^{2012}+10}{10^{2012}+1}=1+\frac{9}{10^{2012}+1}\)

\(B=\frac{10^{2012}+1}{10^{2013}+1}\)

\(\Rightarrow10B=\frac{10^{2013}+10}{10^{2013}+1}=1+\frac{9}{10^{2013}+1}\)

Mà \(10^{2012}+1< 10^{2013}+1\)

\(\Rightarrow\frac{9}{10^{2012}+1}>\frac{9}{10^{2013}+1}\)

\(\Rightarrow1+\frac{9}{10^{2012}+1}>1+\frac{9}{10^{2013}+1}\) hay \(10A>10B\)

Vậy `A>B`

B<102012+1+9102013+1+9=102012+10102013+10=10(102011+1)10(102012+1)=102011+1102012+1=A

Vậy A > B