so sánh xem A gấp mấy lầm B
a)A=3,4 . 10 mũ -8 B= 34 . 10 mũ -9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y+x+1}{x}=\dfrac{x+z+2}{y}=\dfrac{z+y-3}{z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\dfrac{1}{x+y+z}=2\Rightarrow x+y+z=\dfrac{1}{2}\)
\(\dfrac{y+x+1}{x}=2\Rightarrow y+x+1=2x\Rightarrow y+1=x\)
\(\dfrac{z+y-3}{z}=2\Rightarrow2z=z+y-3\Rightarrow z=y-3\)
Thay `y+1=x` và `z=y-3` vào `x+y+z=1/2` ta có:
\(y+1+y-3+y=\dfrac{1}{2}\\ \Rightarrow3y-2=\dfrac{1}{2}\Rightarrow3y=\dfrac{5}{2}\\ \Rightarrow y=\dfrac{5}{2}:3\Rightarrow y=\dfrac{5}{6}\)
\(\Rightarrow\left\{{}\begin{matrix}x=y+1=\dfrac{5}{6}+1=\dfrac{11}{6}\\z=y-3=\dfrac{5}{6}-3=\dfrac{-13}{6}\end{matrix}\right.\)
a:
2x=3y=5z
=>\(\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)
=>\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Đặt \(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=k\)
=>x=15k; y=10k; z=6k
|x+y-z|=95
=>|15k+10k-6k|=95
=>|19k|=95
=>|k|=5
=>\(\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\)
TH1: k=5
=>\(x=15\cdot5=75;y=10\cdot5=50;z=6\cdot5=30\)
TH2: k=-5
=>\(x=15\cdot\left(-5\right)=-75;y=10\cdot\left(-5\right)=-50;z=6\cdot\left(-5\right)=-30\)
b: \(\dfrac{6}{11}x=\dfrac{9}{2}y=\dfrac{18}{5}z\)
=>\(\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}\)
mà -x+z=-196
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}=\dfrac{-x+z}{-\dfrac{11}{6}+\dfrac{5}{18}}=\dfrac{-196}{-\dfrac{14}{9}}=126\)
=>\(x=126\cdot\dfrac{11}{6}=231;y=126\cdot\dfrac{2}{9}=28;z=126\cdot\dfrac{5}{18}=35\)
a: Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=k\)
=>a=2k; b=3k; c=4k
\(a^2-b^2+2c^2=108\)
=>\(\left(2k\right)^2-\left(3k\right)^2+2\cdot\left(4k\right)^2=108\)
=>\(4k^2-9k^2+32k^2=108\)
=>\(27k^2=108\)
=>\(k^2=4\)
=>\(\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)
TH1: k=2
=>\(a=2\cdot2=4;b=3\cdot2=6;c=4\cdot2=8\)
TH2: k=-2
=>\(a=2\cdot\left(-2\right)=-4;b=3\cdot\left(-2\right)=-6;c=4\cdot\left(-2\right)=-8\)
b: Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)
=>x=3k; y=4k; z=5k
\(-3x^2-2y^2+5z^2=594\)
=>\(-3\cdot\left(3k\right)^2-2\cdot\left(4k\right)^2+5\cdot\left(5k\right)^2=594\)
=>\(-27k^2-32k^2+125k^2=594\)
=>\(k^2=9\)
=>\(\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\)
TH1: k=3
=>\(x=3\cdot3=9;y=4\cdot3=12;z=5\cdot3=15\)
TH2: k=-3
=>\(x=3\cdot\left(-3\right)=-9;y=4\cdot\left(-3\right)=-12;z=5\cdot\left(-3\right)=-15\)
a) Đặt: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=k\Rightarrow\left\{{}\begin{matrix}a=2k\\b=3k\\c=4k\end{matrix}\right.\)
\(a^2-b^2+2c^2=108\)
\(\Rightarrow\left(2k\right)^2-\left(3k\right)^2+2\cdot\left(4k\right)^2=108\\ \Rightarrow4k^2-9k^2+32k^2=108\\ \Rightarrow27k^2=108\\ \Rightarrow k^2=4\\ \Rightarrow k=\pm2\)
Với k=2 \(\Rightarrow\left\{{}\begin{matrix}a=2\cdot2=4\\b=3\cdot2=6\\c=4\cdot2=8\end{matrix}\right.\)
Với k=-2 \(\Rightarrow\left\{{}\begin{matrix}a=2\cdot-2=-4\\b=3\cdot-2=-6\\c=4\cdot-2=-8\end{matrix}\right.\)
Vậy: ...
b) \(x:y:z=3:4:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Đặt: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\)
\(5z^2-3x^2-2y^2=594\\ \Rightarrow5\cdot\left(5k\right)^2-3\cdot\left(3k\right)^2-2\cdot\left(4k\right)^2=594\\ \Rightarrow125k^2-27k^2-32k^2=594\\ \Rightarrow66k^2=594\\ \Rightarrow k^2=\dfrac{594}{66}\\ \Rightarrow k^2=9\\ \Rightarrow k=\pm3\)
Với \(k=3\Rightarrow\left\{{}\begin{matrix}x=3\cdot3=9\\y=4\cdot3=12\\z=5\cdot3=15\end{matrix}\right.\)
Với \(k=-3\Rightarrow\left\{{}\begin{matrix}x=3\cdot-3=-9\\y=4\cdot-3=-12\\z=5\cdot-3=-15\end{matrix}\right.\)
Vậy: ...
a: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
=>\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
mà x+y+z=49
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
=>\(x=12\cdot\dfrac{3}{2}=18;y=12\cdot\dfrac{4}{3}=16;z=12\cdot\dfrac{5}{4}=15\)
b: \(\dfrac{6}{11}x=\dfrac{9}{2}y=\dfrac{18}{5}z\)
=>\(\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}\)
mà -x+y+z=-120
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}=\dfrac{-x+y+z}{-\dfrac{11}{6}+\dfrac{2}{9}+\dfrac{5}{18}}=\dfrac{-120}{-\dfrac{4}{3}}=90\)
=>\(x=90\cdot\dfrac{11}{6}=165;y=90\cdot\dfrac{2}{9}=20;z=90\cdot\dfrac{5}{18}=25\)
a) \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{x}{\dfrac{3}{2}}+\dfrac{y}{\dfrac{4}{3}}+\dfrac{z}{\dfrac{5}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{\dfrac{3}{2}}+\dfrac{y}{\dfrac{4}{3}}+\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
\(\Rightarrow\dfrac{x}{\dfrac{3}{2}}=12\Rightarrow x=\dfrac{3}{2}\cdot12=18\)
\(\Rightarrow\dfrac{y}{\dfrac{4}{3}}=12\Rightarrow y=\dfrac{4}{3}\cdot12=16\)
\(\Rightarrow\dfrac{z}{\dfrac{5}{4}}=12\Rightarrow z=12\cdot\dfrac{5}{4}=15\)
Vậy: ...
\(\dfrac{3x}{8}=\dfrac{3y}{64}=\dfrac{3z}{216}\)
=>\(\dfrac{x}{8}=\dfrac{y}{64}=\dfrac{z}{216}\)
=>\(\dfrac{x}{2}=\dfrac{y}{16}=\dfrac{z}{54}\)
=>\(\dfrac{x}{1}=\dfrac{y}{8}=\dfrac{z}{27}\)
Đặt \(\dfrac{x}{1}=\dfrac{y}{8}=\dfrac{z}{27}=k\)
=>x=k; y=8k; z=27k
\(2x^2+2y^2-z^2=1\)
=>\(2k^2+2\cdot\left(8k\right)^2-\left(27k\right)^2=1\)
=>\(2k^2+128k^2-729k^2=1\)
=>\(k^2=-\dfrac{1}{599}\)(vô lý)
Vậy: KHông có bộ số (x;y;z) nào thỏa mãn yêu cầu đề bài
TH1: p=2
\(p^2+8=2^2+8=12\) không là số nguyên tố
=>Loại
TH2: p=3
\(p^2+8=3^2+8=17\) là số nguyên tố
\(p^2+2=3^2+2=11\) là số nguyên tố
=>Nhận
TH3: p=3k+1
\(p^2+8=\left(3k+1\right)^2+8=9k^2+6k+9=3\left(3k^2+2k+3\right)⋮3\)
=>p^2+8 không là số nguyên tố
=>Loại
TH4: p=3k+2
\(p^2+8=\left(3k+2\right)^2+8\)
\(=9k^2+12k+4+8=9k^2+12k+12=3\left(3k^2+4k+4\right)⋮3\)
=>p^2+8 không là số nguyên tố
=>Loại
Vậy: p=3
\(-\dfrac{5}{7}\cdot\dfrac{2}{11}+\left(-\dfrac{5}{7}\right)\cdot\dfrac{4}{11}+\dfrac{5}{7}\cdot\left(-\dfrac{5}{11}\right)\\ =-\dfrac{5}{7}\cdot\dfrac{2}{11}+\left(-\dfrac{5}{7}\right)\cdot\dfrac{4}{11}+\left(-\dfrac{5}{7}\right)\cdot\dfrac{5}{11}\\ =\left(-\dfrac{5}{7}\right)\cdot\left(\dfrac{2}{11}+\dfrac{4}{11}+\dfrac{5}{11}\right)\\ =\left(-\dfrac{5}{7}\right)\cdot1=-\dfrac{5}{7}\)
\(\dfrac{5}{7}\cdot\dfrac{6}{13}-\left(-\dfrac{7}{13}\cdot\dfrac{5}{7}\right)+\dfrac{1}{7}:\dfrac{1}{2}\\ =\dfrac{5}{7}\cdot\dfrac{6}{13}-\left(-\dfrac{7}{13}\cdot\dfrac{5}{7}\right)+\dfrac{1}{7}\cdot2\\ =\dfrac{5}{7}\cdot\left[\dfrac{6}{13}-\left(-\dfrac{7}{13}\right)\right]+\dfrac{2}{7}\\ =\dfrac{5}{7}\cdot1+\dfrac{2}{7}=1\)
a)
\(A=3,4\cdot10^{-8}\\ =3,4\cdot\dfrac{1}{10^8}=34\cdot\dfrac{1}{10}\cdot\dfrac{1}{10^8}=34\cdot\dfrac{1}{10^9}\)
\(B=34\cdot10^{-9}\\ =34\cdot\dfrac{1}{10^9}\)
Vậy A = B nên A gấp 1 lần B
a gấp 1 lần b