K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2023

\(\lim\limits_{x\rightarrow-2}=\dfrac{x-1+\sqrt{2x^2+1}}{4-x^2}\)

\(=\lim\limits_{x\rightarrow-2}=\dfrac{\left[\left(x-1\right)+\sqrt{2x^2+1}\right]\left[\left(x-1\right)-\sqrt{2x^2+1}\right]}{\left(4-x^2\right)\left[\left(x-1\right)-\sqrt{2x^2+1}\right]}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(x-1\right)^2-\left(2x^2+1\right)}{\left(4-x^2\right)\left[\left(x-1\right)-\sqrt{2x^2+1}\right]}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{x^2-2x+1-2x^2-1}{\left(4-x^2\right)\left[\left(x-1\right)-\sqrt{2x^2+1}\right]}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{-x^2-2x}{\left(4-x^2\right)\left[\left(x-1\right)-\sqrt{2x^2+1}\right]}\)

\(=\lim\limits_{x\rightarrow-2}=-\dfrac{x}{\left(2-x\right)\left(x-1-\sqrt{2x^2+1}\right)}\)

\(=-\dfrac{1}{12}\)

NV
23 tháng 12 2022

a.

Do N là trọng tâm tam giác ABC \(\Rightarrow\) N là giao điểm AK và BO

Hay A,N,K,F thẳng hàng

\(\Rightarrow\left(AMN\right)\cap\left(SCD\right)=MF\)

b.

Trong mp (SCD) nối FM kéo dài cắt SD tại I

Dễ dàng nhận thấy \(SO=\left(SAC\right)\cap\left(SBD\right)\)

\(\left\{{}\begin{matrix}M\in SC\in\left(SAC\right)\\M\in\left(AMN\right)\end{matrix}\right.\) \(\Rightarrow AM=\left(SAC\right)\cap\left(AMN\right)\)

\(N\in BD\in\left(SBD\right)\Rightarrow N\in\left(AMN\right)\cap\left(SBD\right)\)

\(\left\{{}\begin{matrix}I\in SD\in\left(SBD\right)\\I\in\left(AMN\right)\end{matrix}\right.\) \(\Rightarrow IN=\left(SBD\right)\cap\left(AMN\right)\)

\(\Rightarrow\) 3 mặt phẳng (AMN), (SAC), (SBD) cắt nhau theo 3 giao tuyến phân biệt SO, AM, IN nên 3 đường thẳng này song song hoặc đồng quy

Mà SO cắt AM tại E \(\Rightarrow SO;AM;NI\) đồng quy tại E

Hay N;E;I thẳng hàng

M là trung điểm SC, O là trung điểm AC \(\Rightarrow\) E là trọng tâm tam giác SAC

\(\Rightarrow\dfrac{OE}{OS}=\dfrac{1}{3}\)

Theo giả thiết N là trọng tâm ABC \(\Rightarrow\dfrac{ON}{OB}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{OE}{OS}=\dfrac{ON}{OB}\Rightarrow EN||SB\Rightarrow NI||SB\Rightarrow NI||\left(SBC\right)\)

NV
23 tháng 12 2022

c.

Do \(CF||AB\), áp dụng định lý Talet:

\(\dfrac{KF}{AK}=\dfrac{KC}{KB}=1\Rightarrow KF=AK\)

Do \(AD||BK\) \(\Rightarrow\dfrac{KN}{AN}=\dfrac{BK}{AD}=\dfrac{1}{2}\Rightarrow KN=\dfrac{1}{2}AN\)

\(\Rightarrow KN=\dfrac{1}{2}\left(AK-KN\right)\Rightarrow KN=\dfrac{1}{3}AK=\dfrac{1}{3}KF\)

\(\Rightarrow KF=3KN=3\left(NF-KF\right)\)

\(\Rightarrow KF=\dfrac{3}{4}NF\)

Theo giả thiết M, K lần lượt là trung điểm SC, BC \(\Rightarrow MK\) là đường trung bình tam giác SBC

\(\Rightarrow MK||SB\Rightarrow MK||IN\) (theo c/m câu b)

Áp dụng định lý Talet:

\(\dfrac{KM}{IN}=\dfrac{KF}{NF}=\dfrac{3}{4}\Rightarrow KM=\dfrac{3}{4}IN\)

\(\Rightarrow d\left(M;AF\right)=\dfrac{3}{4}d\left(I;AF\right)\)

\(\Rightarrow\dfrac{S_{\Delta FKM}}{S_{\Delta KAI}}=\dfrac{\dfrac{1}{2}.d\left(M;KF\right).KF}{\dfrac{1}{2}d\left(I;AK\right).AK}=\dfrac{3}{4}.1=\dfrac{3}{4}\)

8 tháng 12 2022

Gọi số cần tìm là: abcd¯

Vì số cần tìm là số lẻ nên: d∈{1;3;5;7;9}⇒ d có 5 cách

a≠d,0⇒ a có 8 cách

b≠d≠a⇒b có 8 cách

c≠a≠b≠d⇒c có 7 cách

Vậy có tất cả 5.8.8.7 = 2240 số.

NV
5 tháng 12 2022

Có \(9.10.10.10.10=90000\) số có 5 chữ số (không gian mẫu)

Có \(\dfrac{99994-10013}{17}+1=5294\) số có 5 chữ số chia hết 17

Xác suất: \(P=\dfrac{5294}{90000}=...\)

 

loading...

2
NV
3 tháng 12 2022

a.

Do S là 1 điểm chung của (SAD) và (SBC) đồng thời \(AD||BC\Rightarrow\) giao tuyến của (SAD) và (SBC) là đường thẳng đi qua S và song song AD

Qua S kẻ đường thẳng d song song AD

\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)

b.

Kéo dài AB và CD cắt nhau tại E

Trong mp (SCD), nối EM cắt SC tại I

\(\Rightarrow I=SC\cap\left(MAB\right)\)

c.

Do AD song song BC, áp dụng định lý Talet:

\(\dfrac{OC}{OA}=\dfrac{BC}{AD}=\dfrac{1}{3}\Rightarrow OC=\dfrac{1}{3}OA=\dfrac{1}{3}\left(AC-OC\right)\)

\(\Rightarrow OC=\dfrac{1}{4}AC\Rightarrow\dfrac{OC}{AC}=\dfrac{1}{4}\) (1)

Cũng theo talet: \(\dfrac{EC}{ED}=\dfrac{BC}{AD}=\dfrac{1}{3}\)

Áp dụng định lý Menelaus cho tam giác SCD:

\(\dfrac{IS}{IC}.\dfrac{CE}{DE}.\dfrac{DM}{MS}=1\Leftrightarrow\dfrac{IS}{IC}.\dfrac{1}{3}.1=1\)

\(\Rightarrow IC=\dfrac{1}{3}IS=\dfrac{1}{3}\left(SC-IC\right)\Rightarrow IC=\dfrac{1}{4}SC\)

\(\Rightarrow\dfrac{IC}{SC}=\dfrac{1}{4}\) (2)

(1);(2) \(\Rightarrow\dfrac{IC}{SC}=\dfrac{OC}{AC}\Rightarrow OI||SA\Rightarrow SA||\left(BID\right)\)

NV
3 tháng 12 2022

loading...

NV
29 tháng 3 2022

Tham khảo:

Câu 5 ạ - Hoc24

25 tháng 3 2022

Tự làm đê

25 tháng 3 2022

????????????????????????????????????