Tìm giá trị của hằng số a để pt sau vô nghiêm
a(3x-1)/5-(6x-17)/4+(3x+2)/10=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-20) + (x-19) + (x-18) + ... + 99 + 100 + 101
= 101
<=> (x-20) + (x-19) + (x-18) + ... + 99 + 100
= 0
<=> (x-20) + (x-19) + (x-18) + ... + (x-1) + x + (x+1) + ... + 100
= 0
VT là tổng của 100-(x-20)+1 = 121-x số nguyên liên tiếp
Trung bình cộng của 121-x số nguyên đó là
[(x-20) + 100] / 2
= (80+x)/2
---> (121-x).(80+x)/2 = 0
---> x = 121 và x = -80
bạn vẽ hình bình hành ra , rồi vẽ 2 chiều cao AH và AI
ta có : AB = 6cm , AD = 4 cm , AH = 5cm
Sabcd = AH . BC = AH. AD = 5.4=20\(cm^2\)
Sabcd = AI .DC = AI . AB = AI .6
-> AI .6b=20 => AI = \(\frac{20}{6}=\frac{10}{3}\left(cm^2\right)\)
(2x^2-3x+1)(2x^2+5x+1)=9x^2
<=> (2x^2+5x+1- 8x)(2x^2 +5x+1)=9x^2
<=> (2x^2+5x+1)^2 -8x(2x^2+5x+1)=9x^2
<=> (2x^2+5x+1)^2 -2*(4x)*(2x^2+5x+1)=9x^2
<=> (2x^2+5x+1)^2 -2*(4x)*(2x^2+5x+1)+(4x)^2=9x^2+16x^2
<=> (2x^2+5x+1 - 4x)^2=25x^2
<=> (2x^2+x+1)^2=25x^2
<=> (2x^2+x+1)^2 - 25x^2 =0
<=>(2x^2+x+1-5x)(2x^2+x+1+5x)=0
<=>(2x^2-4x+1)(2x^2+6x+1)=0
<=> (2x^2-4x+1)=0 => 2( x^2 - 2x + 1/2)=0
<=> x^2-2x +1/2 =0
<=> (x^2-2x+1) -1/2 =0
<=> (x-1)^2 =1/2 => x-1 =căn(1/2) => x=căn(1/2)+1
=> x-1=-(căn(1/2)) => x=- (căn(1/2)) +1
Hoặc 2x^2 +6x +1=0
<=> x^2 + 3x +1/2 =0
<=> (x^2 + 2*(1.5)x + (1.5)^2) -(1.5)^2+1/2 =0
<=> (x+1.5)^2 - 7/4 =0
<=> (x+1.5)^2 = 7/4 => x+1.5 = căn(7/4) => x=căn(7/4) -1.5
=> x+1.5 =- căn(7/4) => x=-căn(7/4) -1.5
nhớ thanks bạn (+_+)