cho tam giác ABC .Trên nửa măt phẳng bờ BC có chứa điểm A. Vẽ BC vuông góc với BD; BD=BC. Trên nửa mặt phẳng bờ AB có chứa điểm C. Vẽ BE vuông góc với AB, BE=BA.
So sánh: AD và CE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=k\)=>\(a=k\cdot a_1\), \(b=k\cdot b_1\), \(c=k\cdot c_1\)
=> \(P=\frac{a\cdot x^2+b\cdot x+c}{a_1\cdot x^2+b_1\cdot x+c_1}=\frac{k\cdot a_1\cdot x^2+k\cdot b_1\cdot x+k\cdot c_1}{a_1\cdot x^2+b_1\cdot x+c_1}=\frac{k\cdot\left(a_1\cdot x^2+b_1\cdot x+c_1\right)}{a_1\cdot x^2+b_1\cdot x+c_1}=k\)
Vậy khi \(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=k\)thì \(P\) luôn bằng k với mọi x
(Nhớ tick cho mình nha)
Giả sử tam giác ABC có các đường cao AH, BK, CI. Ta cần c/m AH, BK, CI đồng quy.
~~~~~~~
Qua 3 đỉnh A, B, C của tam giác, lần lượt kẻ các đường thẳng song song với các cạnh đối diện, chúng cắt nhau tại A'; B'; C'. (A' nằm khác phía với A qua BC, B' nằm khác phía với B qua AC, C' nằm khác phía với C qua AB).
Xét tam giác ABC và tam giác BAC' có:
góc BAC = góc ABC' (so le trong)
AB chung
góc ABC = góc BAC' (so le trong)
=> tam giác ABC = tam giác BAC' (gcg)
=> AC = BC'.
Chứng minh tương tự ta có AC = BA'.
=> BC' = BA' => B là trung điểm của A'C'.
Do BK _|_ AC, A'C' // AC => BK _|_ A'C'.
=> BK là đường trung trực của A'C'.
Cmtt => AH và CI là trung trực của B'C' và A'B'.
=> AH, BK, CI là 3 đường trung trực của tam giác A'B'C'. Ta dễ dàng c/m được 3 đường trung trực của tam giác đồng quy dựa vào tính chất điểm nằm trên đường trung trực của một đoạn thằng thì cách đều hai mút của đoạn thẳng đó. Vậy AH, BK, CI đồng quy tại 1 điểm, điểm đó gọi là trực tâm của tam giác ABC.
S = \(\frac{1}{2^0}+\frac{2}{2^1}+\frac{3}{2^2}+...+\frac{1992}{2^{1991}}\)
2.S = \(2+\frac{2}{2^0}+\frac{3}{2^1}+...+\frac{1992}{2^{1990}}\)
=> 2.S - S = \(2+\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{1990}}-\frac{1992}{2^{1991}}\)
=> S = \(2-\frac{1992}{2^{1991}}+\left(\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{1990}}\right)\)
Đặt A = \(\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{1990}}\)
=>2.A = 2 + \(\frac{1}{2^0}+\frac{1}{2^1}+...+\frac{1}{2^{1989}}\)
=> 2.A - A = 2 - \(\frac{1}{2^{1990}}\)=A
Vậy S = \(4-\frac{1}{2^{1990}}-\frac{1992}{2^{1991}}<4\)
ê Trần Thị Loan kết bạn với tui ko