Chứng minh rằng:
a 222333 + 333222 chia hết cho 13
b 22225555 + 55552222 chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/7=0,14289(57)
0,1428(57)<0,4128(57)
1/7<0,4128(57)
k và kb nhé
0,22(23)=0,22232323
0,2223=0,22230000
rõ ràng dễ thấy
0,22(23)>0,2223
Từ \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\) Áp dụng TC DTSBN ta có :
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{y}=1\Rightarrow x=y\\\frac{y}{z}=1\Rightarrow y=z\\\frac{z}{x}=1\Rightarrow z=x\end{cases}}\) \(\Rightarrow x=y=z\)
\(\Rightarrow A=\frac{x^{3333}.z^{6666}}{y^{9999}}=\frac{x^{3333}.x^{6666}}{x^{9999}}=\frac{x^{9999}}{x^{9999}}=1\)
Từ \(\frac{a}{c}=\frac{c}{b}\Rightarrow ab=c^2\)
\(\Rightarrow\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)(đpcm)
Vậy \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
Vì M là trunng điểm của AB
Mà MK vuông góc với AB
=>MK là đường trung trực ứng với AB
=>KA=KB
=>\(\Delta AKC\)cân tại A
Xét \(\Delta AKB\)có KM là đường trung trực ứng với ab đồng thời là đường phân giác
=> KM là tia phân giác góc AKB
GT:đoạn thẳng AB ;M\(\in\)AB(MA=MB);d\(⊥\)BA;M\(\in\)d;k\(\in\)d
KL:\(\widehat{AKM}=\widehat{BKM}\)
CM
ta có đường thẳng d vừa đi qua trung điểm của đoạn thẳng vừa vuông góc với đoạn thẳng AB
=>d là đường trung trực của AB
=> K cách đều hai đầu mút A và B ( tc đường trung trực)
=>KA=KB
=>tam giác AKB cân tại K
=> KM là đường trung trực đồng thời là phân giác
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Nguyễn Hoàng Giang - Toán lớp 7 - Học toán với OnlineMath
b, 5555\(\equiv\)4 (mod 7)=>55552222\(\equiv\)42222 (mod 7)(1)
2222\(\equiv\)3 (mod 7)=>2222=-4 (mod 7)=>22225555\(\equiv\)(-4)5555 (mod 7)(2)
Từ (1) và (2)=>55552222+22225555\(\equiv\)42222+45555 (mod 7)
=>55552222+22225555\(\equiv\)42222 (1-43333) (mod 7)
Ta có:43 \(\equiv\)1 (mod 7)
=>(43)1111\(\equiv\)11111 (mod 7)
=>43333\(\equiv\)1 (mod 7)
=>-43333\(\equiv\)-1(mod 7)
=>1-43333\(\equiv\)0 (mod 7)
=> 55552222+22225555\(\equiv\)0 (mod 7)
Vậy 55552222+22225555\(⋮\)7