x/2 = y/2 = z/-3 và x.y.z = 240
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(x-y-z=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y+z\\y=x-z\\z=x-y\end{matrix}\right.\)
Lại có :\(C=\left(\dfrac{1-z}{x}\right)\left(\dfrac{1-x}{y}\right)\left(\dfrac{1+y}{z}\right)\)
\(C=\left(\dfrac{x-z}{x}\right)\left(\dfrac{y-x}{y}\right)\left(\dfrac{z+y}{z}\right)\)
\(C=\dfrac{y}{x}\cdot\) \(\left(-\dfrac{z}{y}\right)\) \(\dfrac{x}{z}\)
\(C=\dfrac{-xyz}{xyz}=-1\)

\(\dfrac{x}{3}=\dfrac{y}{5}\) \(\Leftrightarrow x=\dfrac{3}{5}y\)
Thay vào B có
\(B=\dfrac{5x^2+3y^2}{10x^2-3y^2}=\dfrac{5\cdot\left(\dfrac{3}{5}y\right)^2+3y^2}{10\cdot\left(\dfrac{3}{5}y\right)^2-3y^2}=\dfrac{5\cdot\dfrac{9}{25}y^2+3y^2}{10\cdot\dfrac{9}{25}y^2-3y^2}\)
\(=\dfrac{\dfrac{9}{5}y^2+3y^2}{\dfrac{18}{5}y^2-3y^2}=\dfrac{y^2\left(\dfrac{9}{5}+3\right)}{y^2\left(\dfrac{18}{5}-3\right)}=\dfrac{\dfrac{9}{5}+3}{\dfrac{18}{5}-3}=\dfrac{\dfrac{24}{5}}{\dfrac{3}{5}}\)
\(=\dfrac{24}{5}\cdot\dfrac{5}{3}=8\)

a, \(\dfrac{7}{20}\) = \(\dfrac{8}{20}\) + (\(\dfrac{-1}{20}\))
b, \(\dfrac{7}{20}\) = \(\dfrac{1}{4}\) + \(\dfrac{1}{10}\)

a, \(\dfrac{13}{18}\) = \(\dfrac{5}{18}\) + \(\dfrac{4}{9}\)
b, \(\dfrac{13}{18}\) = \(\dfrac{14}{18}\) + ( \(\dfrac{-1}{18}\))
c, \(\dfrac{13}{18}\) = \(\dfrac{7}{18}\) + \(\dfrac{1}{3}\)

Góc xMz = tMz-xMt => xMz= 90-70 = 20 ( độ)
Góc tMy = xMy-xMt => 90-70 = 20 ( độ)
Góc zMy = xMy - zMx => 90-20 = 70 ( độ)

a,
Theo đề ra, ta có:
\(\widehat{xOt}=35^o;\widehat{xOy}=70^o\Rightarrow\widehat{xOt}< \widehat{xOy}\)
\(\Rightarrow\) Tia Ot nằm giữa tia Ox và Oy (*)
Ta có: \(\widehat{xOt}+\widehat{tOy}=\widehat{xOy}\)
\(\Rightarrow35^o+\widehat{tOy}=70^o\)
\(\Rightarrow\widehat{tOy}=35^o\) (**)
b,
Từ (*)(**) \(\Rightarrow\) Ot là tia phân giác \(\widehat{xOy}\)
c,
Theo đề ra: Ot' là tia đối của tia Ot
\(\Rightarrow Ot',Ot\) tạo thành \(\widehat{tOt'}\) (Góc bẹt)
Mà \(\widehat{tOt'}=180^o;\widehat{tOy}=35^o\Rightarrow\widehat{tOt'}>\widehat{tOy}\)
\(\Rightarrow\) Tia Oy nằm giữa tia Ot' và tia Ot
Ta có: \(\widehat{t'Oy}+\widehat{tOy}=\widehat{t'Ot}\)
\(\Rightarrow\widehat{t'Oy}=180^o-35^o=145^o\)

\(\dfrac{-3}{7}\) + \(\dfrac{15}{4}\) - \(\dfrac{2}{13}\) - \(\dfrac{3}{7}\)
= \(\dfrac{-3}{7}\)- \(\dfrac{3}{7}\) + \(\dfrac{15}{4}\) - \(\dfrac{2}{13}\)
= \(\dfrac{-6}{7}\) + \(\dfrac{15}{4}\) - \(\dfrac{2}{13}\)
= \(\dfrac{-312}{364}\) + \(\dfrac{1365}{364}\) - \(\dfrac{56}{364}\)
= \(\dfrac{997}{364}\)
= \(\dfrac{19}{7}\)
Đặt \(k=\dfrac{x}{2}=\dfrac{y}{2}=\dfrac{z}{-3}\)
\(\Rightarrow x=2k;y=2k;z=-3k\)
Ta thay \(x=2k;y=2k;z=-3k\) vào \(xyz=240\)
\(\Rightarrow\left(2k\right)\left(2k\right)\left(-3k\right)=240\)
\(\Rightarrow\left[2.2.\left(-3\right)\right]\left(k.k.k\right)=240\)
\(\Rightarrow\left(-12k^3\right)=240\)
\(\Rightarrow k=-\sqrt[3]{20}\)
Vậy \(\left\{{}\begin{matrix}x=y=-2\sqrt[3]{20}\\z=3\sqrt[3]{20}\end{matrix}\right.\)