Chứng minh:
2024/1011 > 199/100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(AE=EB=\dfrac{AB}{2}\)
\(BF=FC=\dfrac{BC}{2}\)
\(DK=KC=\dfrac{DC}{2}\)
mà AB=BC=CD
nên AE=EB=BF=FC=DK=KC
Xét tứ giác AECK có
AE//CK
AE=CK
Do đó: AECK là hình bình hành
b: Xét ΔDCF vuông tại C và ΔCBE vuông tại B có
DC=CB
CF=BE
Do đó: ΔDCF=ΔCBE
=>\(\widehat{DFC}=\widehat{CEB}\)
mà \(\widehat{CEB}+\widehat{BCE}=90^0\)
nên \(\widehat{BCE}+\widehat{DFC}=90^0\)
=>CE\(\perp\)DF
\(1.2\left(x+2\right)^2< 2x\left(x+2\right)+4\\ \Leftrightarrow2\left(x^2+4x+4\right)-2x\left(x+2\right)-4< 0\\ \Leftrightarrow2x^2+8x+4-2x^2-4x-4< 0\\ \Leftrightarrow4x< 0\\ \Leftrightarrow x< 0\\ 2.\left(x-1\right)^2+x^2< \left(x+1\right)^2+\left(x+2\right)^2\\ \Leftrightarrow x^2-2x+1+x^2< x^2+2x+1+x^2+4x+4\\ \Leftrightarrow2x^2-2x+1-2x^2-6x-5< 0\\ \Leftrightarrow-8x-4< 0\\ \Leftrightarrow8x>-4\\ \Leftrightarrow x>-\dfrac{1}{2}\\ 3.\left(x^2+1\right)\left(x-6\right)< \left(x-2\right)^3\\ \Leftrightarrow x^3-6x^2+x-6< x^3-6x^2+12x-8\\ \Leftrightarrow x-6< 12x-8\\ \Leftrightarrow12x-x>-6+8\\ \Leftrightarrow11x>2\\ \Leftrightarrow x>\dfrac{2}{11}\)
a: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB=MC
Xét ΔMAC có \(\widehat{AMB}\) là góc ngoài tại M
nên \(\widehat{AMB}=\widehat{MAC}+\widehat{MCA}=2\cdot\widehat{ACB}=2\alpha\)
=>\(sin2\alpha=sinAMB=\dfrac{AH}{AM}=AH:\dfrac{BC}{2}=\dfrac{2AH}{BC}\)
Xét ΔAHC vuông tại H có \(sinC=\dfrac{AH}{AC}\)
Xét ΔABC vuông tại A có \(cosC=\dfrac{AC}{BC}\)
\(2sin\alpha\cdot cos\alpha=2\cdot\dfrac{AH}{AC}\cdot\dfrac{AC}{BC}=\dfrac{2\cdot AH}{BC}\)
Do đó: \(sin2\alpha=2\cdot sin\alpha\cdot cos\alpha\)
b: \(cos2\alpha=cosAMH=\dfrac{HM}{AM}\)
=>\(1+cos2\alpha=1+\dfrac{HM}{AM}=\dfrac{HC}{AM}=\dfrac{2\cdot HC}{BC}=2\cdot\dfrac{AC^2}{BC^2}\)
\(2\cdot cos^2\alpha=2\cdot cos^2C=2\cdot\left(\dfrac{CA}{BC}\right)^2=2\cdot\dfrac{CA^2}{CB^2}\)
Do đó: \(1+cos2\alpha=2\cdot cos^2\alpha\)
c: \(1-cos2\alpha=1-cosAMH=1-\dfrac{HM}{AM}=\dfrac{HB}{AM}=\dfrac{2HB}{BC}=2\cdot\dfrac{AB^2}{BC^2}\)
\(2\cdot sin^2\alpha=2\cdot sin^2ACB=2\cdot\left(\dfrac{AB}{BC}\right)^2\)
Do đó: \(1-cos2a=2\cdot sin^2\alpha\)
Xét ΔAHC vuông tại H có \(tanC=\dfrac{AH}{HC}\)
=>\(\dfrac{8}{HC}=tan45=1\)
=>HC=8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(HB\cdot8=8^2\)
=>HB=8(cm)
BC=BH+CH=8+8=16(cm)
ΔAHC vuông tại H
=>\(HA^2+HC^2=AC^2\)
=>\(AC=\sqrt{8^2+8^2}=8\sqrt{2}\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(AB=\sqrt{8^2+8^2}=8\sqrt{2}\left(cm\right)\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)
=>\(\dfrac{AC}{15}=\dfrac{3}{5}\)
=>\(AC=15\cdot\dfrac{3}{5}=9\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB=\sqrt{15^2-9^2}=12\left(cm\right)\)
Tam giác `ABC` vuông tại `A`
`=> AC = BC . sinB = 15 . 3/5 = 9 (cm)`
Và `AB =` \(\sqrt{BC^2-AC^2}=\sqrt{15^2-9^2}=\sqrt{144}=12\) `(cm)`
Xét ΔABC vuông tại A có \(tanB=\dfrac{AC}{AB}\)
=>\(\dfrac{AC}{AB}=\sqrt{3}\)
=>\(\dfrac{AC^2}{AB^2}=3\)
=>\(AC^3=3AB^2\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(4\cdot AB^2=2^2=4\)
=>\(AB^2=1\)
=>AB=1(cm)
=>\(AC=1\cdot\sqrt{3}=\sqrt{3}\left(cm\right)\)
\(\dfrac{2024}{1011}>\dfrac{2022}{1011}=2;2=\dfrac{200}{100}>\dfrac{199}{100}\)
Do đó: \(\dfrac{2024}{1011}>\dfrac{199}{100}\)
\(\dfrac{2024}{1011}=\dfrac{2022}{1011}+\dfrac{2}{1011}=2+\dfrac{2}{1011}>2\)
\(\dfrac{199}{100}=\dfrac{200}{100}-\dfrac{1}{100}=2-\dfrac{1}{100}< 2\)
=> \(\dfrac{199}{100}< 2< \dfrac{2024}{1011}\)
Hay \(\dfrac{199}{100}< \dfrac{2024}{1011}\)