Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(C=\left(6-\dfrac{2}{3}+\dfrac{5}{16}\right)-\left(2+\dfrac{4}{3}-\dfrac{7}{8}\right)-\left(6-\dfrac{5}{8}+\dfrac{13}{12}\right)\)
\(=6-\dfrac{2}{3}+\dfrac{5}{16}-2-\dfrac{4}{3}+\dfrac{7}{8}-6+\dfrac{5}{8}-\dfrac{13}{12}\)
\(=\left(6-2-6\right)+\left(-\dfrac{2}{3}-\dfrac{4}{3}\right)+\left(\dfrac{5}{16}+\dfrac{7}{8}+\dfrac{5}{8}\right)-\dfrac{13}{12}\)
\(=-2-2+\left(\dfrac{5}{16}+\dfrac{12}{8}\right)-\dfrac{13}{12}\)
\(=-4-\dfrac{13}{12}+\dfrac{29}{16}=-\dfrac{157}{48}\)
\(C=\left(6-\dfrac{2}{3}-\dfrac{5}{10}\right)-\left(2+\dfrac{4}{3}-\dfrac{7}{8}\right)-\left(6-\dfrac{5}{8}+\dfrac{13}{12}\right)\)
\(=6-\dfrac{2}{3}-\dfrac{5}{10}-2-\dfrac{4}{3}+\dfrac{7}{8}-6+\dfrac{5}{8}-\dfrac{13}{12}\)
\(=\left(6-2-6\right)+\left(-\dfrac{2}{3}-\dfrac{4}{3}\right)+\left(\dfrac{7}{8}+\dfrac{5}{8}\right)+\left(\dfrac{-5}{10}-\dfrac{13}{12}\right)\)
\(=\left(-2\right)+\left(-2\right)+\dfrac{3}{2}+\dfrac{-19}{12}\)
\(=\left(-4\right)+\dfrac{18}{12}+\dfrac{-19}{12}\)
\(=\left(-4\right)+\dfrac{-1}{12}\)
\(=\dfrac{-48}{12}+\dfrac{-1}{12}\)
\(=\dfrac{-49}{12}\)

\(B=\left(5-\dfrac{3}{4}+\dfrac{1}{5}\right)-\left(6+\dfrac{7}{4}-\dfrac{8}{5}\right)-\left(2-\dfrac{5}{4}+\dfrac{16}{5}\right)\)
\(=5-\dfrac{3}{4}+\dfrac{1}{5}-6-\dfrac{7}{4}+\dfrac{8}{5}-2+\dfrac{5}{4}-\dfrac{16}{5}\)
\(=\left(5-6-2\right)+\left(-\dfrac{3}{4}-\dfrac{7}{4}+\dfrac{5}{4}\right)+\left(\dfrac{1}{5}+\dfrac{8}{5}-\dfrac{16}{5}\right)\)
\(=-3+\dfrac{-5}{4}+\dfrac{-7}{5}=-3-1,25-1,4=-5,65\)

\(\dfrac{2}{3}-\left(-\dfrac{1}{4}\right)+\dfrac{3}{5}-\dfrac{7}{45}-\left(-\dfrac{5}{9}\right)+\dfrac{1}{12}+\dfrac{1}{35}\\ =\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{3}{5}-\dfrac{7}{45}+\dfrac{5}{9}+\dfrac{1}{12}+\dfrac{1}{35}\\ =\left(\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{1}{12}\right)+\left(\dfrac{3}{5}+\dfrac{5}{9}-\dfrac{7}{45}\right)+\dfrac{1}{35}\\ =\left(\dfrac{8}{12}+\dfrac{3}{12}+\dfrac{1}{12}\right)+\left(\dfrac{27}{45}+\dfrac{25}{45}-\dfrac{7}{45}\right)+\dfrac{1}{35}\\ =\dfrac{12}{12}+\dfrac{45}{45}+\dfrac{1}{35}\\ =1+1+\dfrac{1}{35}\\ =2+\dfrac{1}{35}\\ =\dfrac{70}{35}+\dfrac{1}{35}=\dfrac{71}{35}\)
\(\dfrac{2}{3}-\left(-\dfrac{1}{4}\right)+\dfrac{3}{5}-\dfrac{7}{45}-\left(-\dfrac{5}{9}\right)+\dfrac{1}{12}+\dfrac{1}{35}\)
\(=\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{3}{5}-\dfrac{7}{45}+\dfrac{5}{9}+\dfrac{1}{12}+\dfrac{1}{35}\)
\(=\left(\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{1}{12}\right)+\left(\dfrac{3}{5}+\dfrac{1}{35}\right)+\left(-\dfrac{7}{45}+\dfrac{5}{9}\right)\)
\(=\left(\dfrac{8}{12}+\dfrac{3}{12}+\dfrac{1}{12}\right)+\left(\dfrac{21}{35}+\dfrac{1}{35}\right)+\left(-\dfrac{7}{45}+\dfrac{25}{45}\right)\)
\(=1+\dfrac{22}{35}+\dfrac{18}{45}\)
\(=\dfrac{315}{315}+\dfrac{198}{315}+\dfrac{126}{315}\)
\(=\dfrac{71}{35}\)

Thuế VAT mà bác Minh phải trả khi mua chiếc điện thoại là:
\(10\%\cdot7990000=799000\left(đ\right)\)
Số tiền mà bác Minh phải trả khi mua chiếc điện thoại là:
\(7990000+799000=8789000\left(đ\right)\)
Trong sữa có \(3 , 6 \%\) bơ. Tính lượng sữa trong một chai, biết rằng lượng bơ trong chai sữa này là \(14 , 4\) g.

\(B=\left(1-\dfrac{1}{2^2}\right)\cdot\left(1-\dfrac{1}{3^2}\right)\cdot\left(1-\dfrac{1}{4^2}\right)\cdot...\cdot\left(1-\dfrac{1}{2024^2}\right)\)
\(=\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}\cdot\dfrac{4^2-1}{4^2}\cdot...\cdot\dfrac{2024^2-1}{2024^2}\)
Ta có CT: \(a^2-1=\left(a+1\right)\left(b+1\right)\)
\(B=\dfrac{\left(2+1\right)\left(2-1\right)}{2^2}\cdot\dfrac{\left(3+1\right)\left(3-1\right)}{3^2}\cdot\dfrac{\left(4+1\right)\left(4-1\right)}{4^2}...\cdot\dfrac{\left(2024+1\right)\left(2024-1\right)}{2024^2}\)
\(=\dfrac{1\cdot3}{2^2}\cdot\dfrac{4\cdot2}{3^2}\cdot\dfrac{5\cdot3}{4^2}\cdot...\cdot\dfrac{2025\cdot2023}{2024^2}\)
\(=\dfrac{1\cdot2\cdot3^2\cdot...\cdot2023^2\cdot2024\cdot2025}{2^2\cdot3^2\cdot...\cdot2024^2}\)
\(=\dfrac{2025}{2\cdot2024}=\dfrac{2025}{4048}>\dfrac{2024}{4048}=\dfrac{1}{2}\)
Vậy: ...
Ta có :
\(B=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right).....\left(1-\dfrac{1}{2024^2}\right)\)
\(=\dfrac{2^2-1}{2^2}.\dfrac{3^2-1}{3^2}.\dfrac{4^2-1}{4^2}.....\dfrac{2024^2-1}{2024^2}\)
\(=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.....\dfrac{2023.2025}{2024^2}\)
\(=\dfrac{1.2.3.....2023}{2.3.4.....2024}.\dfrac{3.4.5.....2025}{2.3.4.....2024}\)
\(=\dfrac{1}{2024}.\dfrac{2025}{2}=\dfrac{2025}{4048}>\dfrac{1}{2}\)
Vậy \(B>\dfrac{1}{2}\)

\(\dfrac{x-4}{2020}+\dfrac{x-3}{2021}+\dfrac{x-2}{2022}+\dfrac{x-1}{2023}+\dfrac{x-2024}{5}=4\) (sửa đề)
\(\Rightarrow\left(\dfrac{x-4}{2020}-1\right)+\left(\dfrac{x-3}{2021}-1\right)+\left(\dfrac{x-2}{2022}-1\right)+\left(\dfrac{x-1}{2023}-1\right)+\dfrac{x-2024}{5}=0\)
\(\Rightarrow\dfrac{x-2024}{2020}+\dfrac{x-2024}{2021}+\dfrac{x-2024}{2022}+\dfrac{x-2024}{2023}+\dfrac{x-2024}{5}=0\)
\(\Rightarrow\left(x-2024\right)\left(\dfrac{1}{2020}+\dfrac{1}{2021}+\dfrac{1}{2022}+\dfrac{1}{2023}+\dfrac{1}{5}\right)=0\)
\(\Rightarrow x-2024=0\) (vì \(\dfrac{1}{2020}+\dfrac{1}{2021}+\dfrac{1}{2022}+\dfrac{1}{2023}+\dfrac{1}{5}\ne0\))
\(\Rightarrow x=2024\)
\(\dfrac{x-4}{2020}-1+\dfrac{x-3}{2021}-1+\dfrac{x-2}{2022}-1+\dfrac{x-1}{2023}-1+\dfrac{x-2024}{5}+2=0\)
\(\Leftrightarrow\dfrac{x-2024}{2020}+\dfrac{x-2024}{2021}+\dfrac{x-2024}{2022}+\dfrac{x-2024}{2023}+\dfrac{x-2024}{5}+2=0\)
\(\Leftrightarrow\left(x-2024\right)\left(\dfrac{1}{2020}+\dfrac{1}{2021}+\dfrac{1}{2022}+\dfrac{1}{2023}+\dfrac{1}{5}\right)+2=0\)
\(\Leftrightarrow x=-\dfrac{2}{\dfrac{1}{2020}+\dfrac{1}{2021}+\dfrac{1}{2022}+\dfrac{1}{2023}+\dfrac{1}{5}}+2024\)

SỬA ĐỀ: b) Chứng tỏ S>n-2... & Điều kiện: \(n\inℕ^∗\) và \(n>2\) (theo quy luật)
a) \(S=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{n^2-1}{n^2}\)
\(S=\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{1}{16}\right)+...+\left(1-\dfrac{1}{n^2}\right)\)
\(S=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+1-\dfrac{1}{4^2}+...+1-\dfrac{1}{n^2}\)
\(S=n-1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)
Nhận xét:
\(n-1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)< n-1\)
\(\Rightarrow S< n-1\) (*)
b) Nhận xét:
\(\left\{{}\begin{matrix}\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\\\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\\...\\\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)\cdot n}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{\left(n-1\right)\cdot n}=1-\dfrac{1}{n}< 1\)
\(\Rightarrow-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)>1\)
\(\Rightarrow n-1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)>n-1-1=n-2\)
\(\Rightarrow S>n-2\) (**)
Từ (*) và (**) suy ra:
\(n-2< S< n-1\)
Mà \(n-1\) và \(n-2\) là 2 số tự nhiên liên tiếp nên:
S không thể là một số tự nhiên
Vậy S không thể là một số tự nhiên

A = {\(x\) = 2k + 1/ k\(\in\) N; 6≤ k ≤ 14}
B = {\(x\) = 2k/ k \(\in\) N; 11 ≤ k ≤ 21}
D = {\(x\) = k2/ k \(\in\) N; 2 ≤ k ≤ 7}
A={x\(\in\)N|13<=x<=29; \(x=2k+1;k\in N\)}
B={x\(\in\)N|22<=x<=42: \(x⋮\)2}
C={x\(\in\)N|7<=x<=29; \(x=4k+3\left(k\in N\right)\)}
D={x\(\in\)N|\(4< =x< =49;x=k^2;k\in N\)}
a: \(\dfrac{-3}{5}+\dfrac{28}{5}\left(\dfrac{13}{56}-\dfrac{5}{24}+\dfrac{1}{7}\right)\)
\(=\dfrac{-3}{5}+\dfrac{28}{5}\left(\dfrac{39}{168}-\dfrac{35}{168}+\dfrac{24}{168}\right)\)
\(=\dfrac{-3}{5}+\dfrac{28}{5}\cdot\dfrac{28}{168}=\dfrac{-3}{5}+\dfrac{28}{5}\cdot\dfrac{1}{6}=\dfrac{-3}{5}+\dfrac{14}{15}\)
\(=\dfrac{-9}{15}+\dfrac{14}{15}=\dfrac{5}{15}=\dfrac{1}{3}\)
b: \(\dfrac{5}{7}\cdot\dfrac{11}{18}+\dfrac{3}{7}\cdot\dfrac{5}{18}+\dfrac{4}{9}\)
\(=\dfrac{5}{18}\left(\dfrac{11}{7}+\dfrac{3}{7}\right)+\dfrac{4}{9}\)
\(=\dfrac{5}{18}\cdot2+\dfrac{4}{9}=\dfrac{5}{9}+\dfrac{4}{9}=\dfrac{9}{9}=1\)
c: \(4\dfrac{5}{9}:\left(-\dfrac{5}{7}\right)+\dfrac{49}{9}:\left(-\dfrac{5}{7}\right)\)
\(=\left(\dfrac{41}{9}+\dfrac{49}{9}\right):\dfrac{-5}{7}=10\cdot\dfrac{-7}{5}=-14\)
d: \(\left(-\dfrac{3}{5}+\dfrac{4}{9}\right):\dfrac{7}{11}+\left(-\dfrac{2}{5}+\dfrac{5}{9}\right):\dfrac{7}{11}\)
\(=\left(-\dfrac{3}{5}+\dfrac{4}{9}+\dfrac{-2}{5}+\dfrac{5}{9}\right)\cdot\dfrac{11}{7}\)
\(=\left(-\dfrac{5}{5}+\dfrac{9}{9}\right)\cdot\dfrac{11}{7}=\left(-1+1\right)\cdot\dfrac{11}{7}=0\)
e: \(\dfrac{-3}{4}\cdot5\dfrac{3}{13}-0,75\cdot\dfrac{36}{13}\)
\(=\dfrac{-3}{4}\left(5+\dfrac{3}{13}+\dfrac{36}{13}\right)\)
\(=\dfrac{-3}{4}\cdot8=-6\)
f: \(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{302\cdot305}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{302\cdot305}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{302}-\dfrac{1}{305}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{305}\right)=\dfrac{1}{3}\cdot\dfrac{12}{61}=\dfrac{4}{61}\)
g: \(6\dfrac{5}{12}:2\dfrac{3}{4}-11\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\)
\(=\dfrac{77}{12}:\dfrac{11}{4}-\dfrac{45}{4}\cdot\dfrac{2}{15}=\dfrac{77}{12}\cdot\dfrac{4}{11}-\dfrac{3}{2}\)
\(=\dfrac{7}{3}-\dfrac{3}{2}=\dfrac{14}{6}-\dfrac{9}{6}=\dfrac{5}{6}\)
h: \(\left(\dfrac{3}{5}+0,415-\dfrac{3}{200}\right)\cdot2\dfrac{2}{3}\cdot0,25\)
\(=\left(0,6+0,415-0,015\right)\cdot\dfrac{8}{3}\cdot\dfrac{1}{4}\)
\(=1\cdot\dfrac{2}{3}=\dfrac{2}{3}\)
i: \(\dfrac{5}{16}:0,125-\left(2\dfrac{1}{4}-0,6\right)\cdot\dfrac{10}{11}\)
\(=\dfrac{5}{16}:\dfrac{1}{8}-\left(\dfrac{9}{4}-\dfrac{3}{5}\right)\cdot\dfrac{10}{11}\)
\(=\dfrac{5}{2}-\left(\dfrac{45}{20}-\dfrac{12}{20}\right)\cdot\dfrac{10}{11}=\dfrac{5}{2}-\dfrac{33}{20}\cdot\dfrac{10}{11}=\dfrac{5}{2}-\dfrac{3}{2}=\dfrac{2}{2}=1\)
cam on nha