Chứng minh rằng: nếu $n^2$ chẵn thì $n$ chẵn.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2N
0
NQ
0
Ta có n2 = n.n
mà n2 chẵn => n.n chẵn
=> n.n ⋮2
=> có ít nhất 1 số chia hết cho 2
mà n = n => n ⋮2
=> n chẵn (đpcm)
Ta có n2 = n.n
mà n2 chẵn
=> n.n chẵn
=> n.n ⋮⋮2
=> có ít nhất 1 số chia hết cho 2
mà n = n => n ⋮⋮2 => n chẵn (đpcm)