K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2021

Xét \(A=\frac{1}{\sqrt{x^2+1}-x}=\frac{\sqrt{x^2+1}+x}{\left(\sqrt{x^2+1}-x\right)\left(\sqrt{x^2+1}+x\right)}=\frac{\sqrt{x^2+1}+x}{x^2+1-x^2}=\sqrt{x^2+1}+x\)

Lưu ý: ĐKXĐ của A là \(x\in R\)vì \(\hept{\begin{cases}x^2+1>0\\\sqrt{x^2+1}>x\end{cases},\forall x\in R}\)

Vậy để \(A\in N\)thì \(\sqrt{x^2+1}+x=k,k\in N,k>0\Rightarrow\sqrt{x^2+1}=k-x\)

\(\Rightarrow x^2+1=x^2-2kx+k^2\Rightarrow x=\frac{k^2-1}{2k},k\in N,k>0\)

Vậy yêu cầu bài toán thỏa mãn khi x có dạng \(\frac{k^2-1}{2k},k\inℕ^∗\)

17 tháng 7 2021

Chứng minh bài toán phụ: 

Nếu \(a+b+c=0\Leftrightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\) với a,b,c khác 0

Ta có: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}\)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\cdot\frac{a+b+c}{abc}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)

=> đpcm

Áp dụng vào:

a) Ta có: \(U_n=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{1}{1}+\frac{1}{n^2}+\frac{1}{\left[-\left(n+1\right)\right]^2}}\)

\(=\left|1+\frac{1}{n}-\frac{1}{n+1}\right|\) là số hữu tỉ vì n là số tự nhiên khác 0

b) Áp dụng công thức tự tính ra nhé

17 tháng 7 2021

a) \(u_n=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}}\)

\(=\sqrt{\frac{\left[n\left(n+1\right)\right]^2+2n^2+2n+1}{\left[n\left(n+1\right)\right]^2}}=\sqrt{\frac{\left[n\left(n+1\right)\right]^2+2n\left(n+1\right)+1}{\left[n\left(n+1\right)\right]^2}}\)

\(=\sqrt{\frac{\left[n\left(n+1\right)+1\right]^2}{\left[n\left(n+1\right)\right]^2}}=\frac{n\left(n+1\right)+1}{n\left(n+1\right)}\in Q\)

b) \(u_n=\frac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\frac{1}{n\left(n+1\right)}=1+\frac{1}{n}-\frac{1}{n+1}\)

Vậy \(S_{2021}=u_1+u_2+...+u_{2021}=1+\frac{1}{1}-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{2021}-\frac{1}{2022}\)

\(=2022-\frac{1}{2022}=\frac{2022^2-1}{2022}\)

\(\sqrt{x^2+1}∈N\Leftrightarrow x^2+1=k^2\Leftrightarrow x^2=k^2-1\Leftrightarrow x^2\text{ và }k^2\text{là hai số chính phương liên tiếp }\)

\(\Leftrightarrow\hept{\begin{cases}x^2 = 0\\k^2 = 1\end{cases}\Leftrightarrow\hept{\begin{cases}x = 0\\k= 1\end{cases}}}\)

\(\sqrt{x^2+1}∈N\Leftrightarrow x^2+1=k^2\Leftrightarrow x^2=k^2-1\Leftrightarrow x^2\text{ và }k^2\text{là hai số chính phương liên tiếp }\)

\(\Leftrightarrow\hept{\begin{cases}x^2=0\\k^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\k=1\end{cases}}\)

Trả lời :

\(\sqrt{x^2}+1∈N\Leftrightarrow\sqrt{x^2}∈N\left(\text{do 1 ∈ N }\right)\)

17 tháng 7 2021

ĐKXĐ: 32x102x1<0x<12

17 tháng 7 2021

 can 2 cong vs can may z

17 tháng 7 2021

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{\left(1+b\right)\left(1+c\right)}.\frac{1+b}{8}.\frac{1+c}{8}}\)

\(=3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

\(\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{1+a}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{b^3}{64}}=\frac{3b}{4}\)

tương tự cái còn lại ta đc

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{2a+2b+2c+6}{8}\ge\frac{3\left(a+b+c\right)}{4}\)

\(VT+\frac{2\left(a+b+c+3\right)}{8}\ge\frac{3\left(a+b+c\right)}{4}\)

\(a+b+c\ge3\sqrt[3]{abc}\)

\(VT+\frac{2\left(3\sqrt[3]{abc}+3\right)}{8}\ge\frac{3\left(3\sqrt[3]{abc}\right)}{4}\)

\(VT+\frac{3\sqrt[3]{abc}+3}{4}\ge\frac{3\sqrt[3]{abc}}{4}\)

\(VT\ge\frac{3}{4}=VP\)

\(< =>ĐPCM\)

DD
17 tháng 7 2021

\(x=\sqrt[3]{2}+\sqrt[3]{3}\)

\(\Leftrightarrow x^3=2+3+3\sqrt[3]{2.3}\left(\sqrt[3]{2}+\sqrt[3]{3}\right)\)

\(\Leftrightarrow x^3-5=3\sqrt[3]{6}x\)

\(\Leftrightarrow x^9-15x^6+75x^3-125=162x^3\)

\(\Leftrightarrow x^9-15x^6-87x^3-125=0\)(1)

Nếu phương trình (1) có nghiệm hữu tỉ thì nghiệm đó có dạng \(\frac{p}{q}\)với \(p\)là ước của \(125\)\(q\)là ước của \(1\)

Do đó nếu (1) có nghiệm thì nghiệm đó chỉ có thể là thuộc tập hợp: \(\left\{-125,-25,-5,-1,1,5,25,125\right\}\).

Thử lần lượt các giá trị trên ta đều thấy không thỏa mãn. 

Do đó phương trình (1) không có nghiệm hữu tỉ. 

Mà \(x=\sqrt[3]{2}+\sqrt[3]{3}\)là một nghiệm của phương trình (1). 

Do đó \(x=\sqrt[3]{2}+\sqrt[3]{3}\)là số vô tỉ. 

VÌ : \(\sqrt{2}\)+\(\sqrt{3}\)là số vô tỉ

=> ....

Mới lớp 8 nên ko bt gì hết ;-;