Chứng minh rằng từ \(\frac{a}{b}\)=\(\frac{c}{d}\)ta có tỉ lệ thức sau:
\(\frac{4a^2-3ab}{9a^2+7b^2}=\frac{4c^2-3cd}{9c^2+7d^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : góc vuông = 90o
a)
- tia AH cắt tia BC là góc vuông nên HA là tia phân giác của góc BAC nên :
\(\widehat{BAH}=\widehat{HAC}\) = 90o:2 = 45o
- tia EH cắt tia BC là góc vuông nên AB là tia phân giác của góc BAC nên :
\(\widehat{BHE}=\widehat{EAH}\) = 90o:2 = 45o
=> \(\widehat{ABC}=\widehat{HAC}\) (45o=45o) (đpcm)
b) ta có: + \(\widehat{BHE}\) =45o ( câu a )
+ \(\widehat{FHA}\) = 45o (câu a)
=> \(\widehat{BHE}\) = \(\widehat{FHA}\) (45o=45o) (đpcm)
Xét x, y, z cùng chẵn hoặc cùng lẻ thì ta có:
\(\left(x-y\right)^3\)chẵn; \(3\left(y-z\right)^2\)chẵn; \(5|x-z|\) chẵn
\(\Rightarrow VT\)là số chẵn còn VP là số lẻ (loại).
Xét trong 3 số x, y, z có 2 số chẵn 1 số lẻ. Không mát tính tổng quát giả sử số lẻ là x.
\(\left(x-y\right)^3\)lẻ; \(3\left(y-z\right)^2\)chẵn; \(5|x-z|\)lẻ
\(\Rightarrow\)VT là số chẵn còn VP là số lẻ (loại).
Xét trong 3 số x, y, z có 2 số lẻ 1 số chẵn. Không mát tính tổng quát giả sử số chẵn là x.
\(\left(x-y\right)^3\)lẻ; \(3\left(y-z\right)^2\)chẵn; \(5|x-z|\)lẻ
\(\Rightarrow\)VT là số chẵn còn VP là số lẻ (loại).
Vậy PT vô nghiệm.
Ta xét tính chẵn lẻ của x,y,z rồi chứng minh tổng trên luôn chẵn là được
bài này cx đề mak bạn chỉ cần đọc lại sách vở và vẽ hình thôi là lm dk
Mấy bài dạng này có nhiều cách giải, cách đặt dưới đây luôn thực hiện được
Đặt \(\frac{a}{b}=\frac{c}{d}=k\) suy ra a =b.k và c =d.k
thay a=b.k vào tỉ số thứ nhất, biến đổi và rút gọn cho b2 ta được (4.k2-3k)/(9.k2+7) (1)
thay c=d.k vào tỉ số thứ hai, biến đổi và rút gọn cho d2 ta được (4.k2-3k)/(9.k2 (2)
Từ (1) và (2) suy ra đpcm