Cho \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)và \(x;y;z\ne0\)
CMR \(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{1}{a^2+b^2+c^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+5x+7=x^2+5x+\frac{25}{4}-\frac{5}{4}=\left(x+\frac{5}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)-5/4. GTNN =-5/4 .Hình như thế
= 16x3 -16x2 + 4x2 - 4x + 7x - 7
= 16x2(x-1)+4x(x-1)+7(x-1)
=(x-1)(16x2+4x+7)
a) 9x2 - 6x + 2 = (3x)2 - 2.3x.1 + 12 + 1 = (3x - 1)2 + 1 mà\(\left(3x+1\right)^2\ge0\Rightarrow\left(3x+1\right)^2+1\ge1>0\)
b) x2 + x + 1 = x2 + 2.x.\(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)mà\(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
c) 2x2 + 2x + 1 =\(\left(\sqrt{2}x\right)^2+2\sqrt{2}x.\frac{1}{\sqrt{2}}+\left(\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\)
a) \(9x^2-6x+2=\left(\left(3x\right)^2-2.3x.1+1\right)+1=\left(3x-1\right)^2+1>0\)
b) .\(x^2+x+1=\left(\left(x^2\right)+2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
c) \(2x^2+2x+1=x^2+\left(x^2+2x+1\right)=x^2+\left(x+1\right)^2>0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{a+b+c}{x+y+z}=k\)
\(\Rightarrow\hept{\begin{cases}a=kx;b=ky;c=kz\Rightarrow a^2=k^2x^2;b^2=k^2y^2;c^2=k^2z^2\\a+b+c=k\left(x+y+z\right)\end{cases}}\)
Có: \(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{x^2+y^2+z^2}{\left(kx^2+ky^2+kz^2\right)^2}=\frac{x^2+y^2+z^2}{k^2\left(x^2+y^2+z^2\right)^2}=\frac{1}{k^2\left(x^2+y^2+z^2\right)}\)
\(=\frac{1}{k^2x^2+k^2y^2+k^2z^2}=\frac{1}{a^2+b^2+c^2}\)(đpcm)