K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2015

Gợi ý: áp dụng hệ quả của bunhia

dấu bằng khi 1/x=4/y=3/z

14 tháng 1 2015

trang giấy; mặt bàn;  mặt bảng; .....

14 tháng 1 2015

mặt bàn , tờ giấy ....

đây là toán lớp 6

11 tháng 11 2019

Áp dụng BĐT Cauchy cho 3 số không âm:

\(\frac{a^3}{b}+\frac{a^3}{b}+b^2\ge3\sqrt[3]{\frac{a^3a^3b^2}{b^2}}=3a^2\)

\(\frac{b^3}{c}+\frac{b^3}{c}+c^2\ge3\sqrt[3]{\frac{b^3b^3c^2}{c^2}}=3b^2\)

\(\frac{c^3}{a}+\frac{c^3}{a}+a^2\ge3\sqrt[3]{\frac{c^3c^3a^2}{a^2}}=3c^2\)

Cộng từng vế của các BĐT trên, ta được:

\(2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)+\left(a^2+b^2+c^2\right)\ge3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)\ge2\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\)(1)

Ta cần c/m: \(a^2+b^2+c^2\ge ab+bc+ac\)

Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(điều đúng)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)(2)

(Dấu "="\(\Leftrightarrow a=b=c\))

Từ (1) và (2) suy ra \(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)

(Dấu "="\(\Leftrightarrow a=b=c\))

12 tháng 11 2019

Đúng rồi! Tham khảo thêm một cách nhé:

\(VT=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\)  ( Svác - xơ )

\(\ge\frac{\left(ab+bc+ac\right)^2}{ab+bc+ac}=ab+bc+ac\)

"=" <=> a= b= c.

AH
Akai Haruma
Giáo viên
25 tháng 7

Lời giải:
Áp dụng BĐT AM-GM:

$x^6+\frac{1}{8}+\frac{1}{8}\geq 3\sqrt[3]{\frac{x^6}{64}}=\frac{3}{4}x^2$

$y^6+\frac{1}{8}+\frac{1}{8}\geq \frac{3}{4}y^2$

Cộng 2 BĐT trên và thu gọn theo vế thì:

$A+\frac{1}{2}\geq \frac{3}{4}(x^2+y^2)$

$\Leftrightarrow A+\frac{1}{2}\geq \frac{3}{4}$

$\Leftrightarrow A\geq \frac{1}{4}$

--------------------

Lại có:

$x^2+y^2=1\Rightarrow x^2\leq 1; y^2\leq 1\Rightarrow x^4\leq 1; y^4\leq 1$

Khi đó:

$x^6\leq x^2; y^6\leq y^2$

$\Rightarrow x^6+y^6\leq x^2+y^2$

$\Rightarrow A\leq 1$
Vậy $A_{\min}=\frac{1}{4}; A_{\max}=1$

AH
Akai Haruma
Giáo viên
25 tháng 7

Lời giải:

$M=\frac{x+1}{x^2+x+1}$

$\Leftrightarrow M(x^2+x+1)=x+1$
$\Leftrightarrow Mx^2+x(M-1)+(M-1)=0(*)$

Vì $M$ tồn tại PT $(*)$ luôn có nghiệm.

$\Leftrightarrow \Delta=(M-1)^2-4M(M-1)\geq 0$

$\Leftrightarrow (M-1)(M-1-4M)\geq 0$

$\Leftrightarrow (M-1)(-1-3M)\geq 0$

$\Leftrightarrow (M-1)(3M+1)\leq 0$

$\Leftrightarrow \frac{-1}{3}\leq M\leq 1$
Vậy $M_{\min}=\frac{-1}{3}; M_{\max}=1$

18 tháng 1 2015

          (a^2 +b^2 ) (x^2 + y^2 ) >= (ax +by )^2
<=> a^2 x^2 + a^2 y^2 + b^2 x^2 + b^2 y^2 >= a^2 x^2 + b^2 y^2 + 2axby
<=> a^2 y^2 + b^2 x^2 - 2axby >= 0
<=> (ay - bx )^2 >= 0 ( luôn đúng với mọi a b x y )
Dấu đẳng thức xảy ra khi  ax = by