K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 5

Gọi số than đội xe phải chở mỗi ngày theo kế hoạch là x (tấn)

Thời gian chở hết than theo kế hoạch là: \(\dfrac{120}{x}\) ngày

Thực tế mỗi ngày đội chở được: \(x+6\) tấn

Thực tế số than đội chở được là: \(120+10=130\) (tấn)

Thực tế thời gian chở hết số than là: \(\dfrac{130}{x+6}\) ngày

Do đội hoàn thành trước kế hoạch 1 ngày nên ta có pt:

\(\dfrac{120}{x}-\dfrac{130}{x+6}=1\)

\(\Rightarrow120\left(x+6\right)-130x=x\left(x+6\right)\)

\(\Leftrightarrow x^2+16x-720=0\Rightarrow\left[{}\begin{matrix}x=20\\x=-36\left(loại\right)\end{matrix}\right.\)

\(C=3+2\sqrt{4x^2-8x+13}\)

\(=3+2\sqrt{4x^2-8x+4+9}\)

\(=3+2\sqrt{\left(2x-2\right)^2+9}>=3+2\cdot\sqrt{9}=9\)

Dấu '=' xảy ra khi 2x-2=0

=>x=1

\(D=\left(\sqrt{x}-6\right)^2+\left(\sqrt{x}+2\right)^2\)

\(=x-12\sqrt{x}+36+x+4\sqrt{x}+4\)

\(=2x-8\sqrt{x}+40\)

\(=2\left(x-4\sqrt{x}+20\right)\)

\(=2\left(x-4\sqrt{x}+4+16\right)\)

\(=2\left(\sqrt{x}-2\right)^2+32>=32\forall x\) thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi \(\sqrt{x}-2=0\)

=>x=4

\(F=x+y-2\sqrt{x+2}-4\sqrt{y-1}+10\)

\(=x+2-2\sqrt{x+2}+1+y-1-4\sqrt{y-1}+4+4\)

\(=\left(\sqrt{x+2}-1\right)^2+\left(\sqrt{y-1}-2\right)^2+4>=4\forall x,y\) thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x+2=1\\y-1=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\)

(d')//(d)

=>\(\left\{{}\begin{matrix}a=-1\\b\ne-2\end{matrix}\right.\)

vậy: (d'): y=-x+b
Thay x=-1 và y=3 vào (d'), ta được:

b+1=3

=>b=2(nhận)

vậy: y=-x+2

a: Xét (O) có

ΔBAC nội tiếp

BC là đường kính

Do đó: ΔBAC vuông tại A

=>CA\(\perp\)SB tại A

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>BD\(\perp\)SC tại D

Xét ΔSBC có

BD,CA là các đường cao

BD cắt CA tại H

Do đó: H là trực tâm của ΔSBC

=>SH\(\perp\)BC tại E

Xét tứ giác HECD có \(\widehat{HDC}+\widehat{HEC}=90^0+90^0=180^0\)

nên HECD là tứ giác nội tiếp

b: ΔSAH vuông tại A

mà AT là đường trung tuyến

nên TA=TH

=>ΔTHA cân tại T

=>\(\widehat{TAH}=\widehat{THA}\)

mà \(\widehat{THA}=\widehat{EHC}\)(hai góc đối đỉnh)

và \(\widehat{EHC}=\widehat{EDC}\)(HDCE nội tiếp)

nên \(\widehat{TAH}=\widehat{KDC}\)

 

NV
4 tháng 5

Gọi A là giao điểm của (d') và Ox, tọa độ A là nghiệm:

\(\left\{{}\begin{matrix}y=2x-1\\y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-1=0\\y=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=0\end{matrix}\right.\)

\(\Rightarrow A\left(\dfrac{1}{2};0\right)\)

Để (d) cắt (d') tại 1 điểm trên trục hoành \(\Rightarrow A\) thuộc (d)

Thay tọa độ A vào pt (d) ta được:

\(\dfrac{1}{2}.\left(2m-1\right)+3=0\)

\(\Rightarrow2m+5=0\Rightarrow m=-\dfrac{5}{2}\)

NV
4 tháng 5

\(P=\dfrac{x-1-4}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-4}{\sqrt{x}-1}=\sqrt{x}+1-\dfrac{4}{\sqrt{x}-1}\)

P nguyên \(\Rightarrow\dfrac{4}{\sqrt{x}-1}\) nguyên \(\Rightarrow\sqrt{x}-1=Ư\left(4\right)\)

Mà \(\sqrt{x}-1\ge-1;\forall x\)

\(\Rightarrow\sqrt{x}-1=\left\{-1;1;2;4\right\}\)

\(\Rightarrow\sqrt{x}=\left\{0;2;3;5\right\}\)

\(\Rightarrow x=\left\{0;4;9;25\right\}\)

4 tháng 5

Anh ơi,anh đã có ai nhận được rồi nhé. Em xin nghỉ được vào cao điểm của bạn chưa mình đi. 

4 tháng 5

Cgv ạ???