K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7

\(1+3+5+...+x=36\\\left[ \left(x-1\right):2+1\right]\cdot\left(x+1\right):2=36\\ \dfrac{x-1+2}{2}\cdot\dfrac{x+1}{2}=36\\ \dfrac{x+1}{2}\cdot\dfrac{x+1}{2}=36\\ \dfrac{\left(x+1\right)^2}{4}=36\\ \left(x+1\right)^2=36\cdot4=144\)

TH1: x + 1 = 12 => x = 11 

TH2: x + 1 = -12 => x = -13 

Vì: x phải lớn hơn 0 => x = 11 

2 tháng 7

1+3+5+...+x =36

1+3+5+7+9+11 =36

Bài 1:

loading...

a: Hai cạnh đáy là AB,CD

Hai cạnh bên là AD,BC

b: Các cặp góc kề cạnh đáy là:

\(\widehat{BAD};\widehat{ABC}\)

\(\widehat{ADC};\widehat{BCD}\)

Các cặp góc kề cạnh bên là:

\(\widehat{BAD};\widehat{ADC}\)

\(\widehat{ABC};\widehat{BCD}\)

c: Hai đường chéo là AC,BD

 

Bài 2:

a: Ta có: ΔDAC vuông cân tại D

=>\(\widehat{DAC}=\widehat{DCA}=45^0\)

Ta có: ΔABC vuông cân tại A

=>\(\widehat{ABC}=\widehat{ACB}=45^0\)

Ta có: \(\widehat{DAC}=\widehat{ACB}\left(=45^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//CB

=>ABCD là hình thang

Hình thang ABCD có AD\(\perp\)DC

nên ABCD là hình thang vuông

b: ABCD là hình thang vuông có hai đáy là AD,CB và AD\(\perp\)DC

=>CB\(\perp\)CD

=>\(\widehat{ADC}=\widehat{DCB}=90^0\)

Ta có: AD//CB

=>\(\widehat{DAB}+\widehat{ABC}=180^0\)

=>\(\widehat{DAB}=180^0-45^0=135^0\)

2 tháng 7
THAM KHẢO Ạ! Để giải phương trình ( 4 , ? , 4 , ? , 4 = 10 ) bằng các phép toán số học cơ bản (cộng, trừ, nhân, chia), bạn có thể sử dụng các phép toán sau: 4×4−4=10 Dưới đây là bảng phân tích:   Nhân hai bốn đầu tiên: ( 4 times 4 = 16 ) Trừ bốn phần cuối: ( 16 - 4 = 10 )   Vì vậy, phương trình với các phép toán sẽ là ( 4 times 4 - 4 = 10 ).
2 tháng 7

ủa 16-4=12, chứ đâu phải bằng 10 đâu

2 tháng 7

a) 

\(\dfrac{8}{9}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\\ =\dfrac{8}{9}-\left(\dfrac{1}{72}+\dfrac{1}{56}+\dfrac{1}{42}+\dfrac{1}{30}+\dfrac{1}{20}+\dfrac{1}{12}+\dfrac{1}{6}+\dfrac{1}{2}\right)\\ =\dfrac{8}{9}-\left(\dfrac{1}{8\cdot9}+\dfrac{1}{7\cdot8}+\dfrac{1}{6\cdot7}+\dfrac{1}{6\cdot5}+\dfrac{1}{4\cdot5}+\dfrac{1}{3\cdot4}+\dfrac{1}{2\cdot3}+\dfrac{1}{1\cdot2}\right)\\ =\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right)\\ =\dfrac{8}{9}-\left(1-\dfrac{1}{9}\right)\\ =\dfrac{8}{9}-\dfrac{8}{9}\\ =0\)

 

2 tháng 7

b) 

\(\left(-\dfrac{1}{2}\right)-\left(\dfrac{-3}{5}\right)+\left(-\dfrac{1}{9}\right)+\dfrac{1}{127}-\dfrac{7}{18}+\dfrac{4}{35}-\left(\dfrac{-2}{7}\right)\\ =\left(-\dfrac{1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{2}{7}+\dfrac{4}{35}\right)+\dfrac{1}{127}\\ =\dfrac{-9-2-7}{18}+\dfrac{21+10+4}{35}+\dfrac{1}{127}\\ =-1+1+\dfrac{1}{127}\\ =\dfrac{1}{127}\)

c) (*sửa*)

\(\dfrac{3}{5}+\dfrac{3}{11}-\dfrac{-3}{7}+\dfrac{2}{97}-\dfrac{1}{35}-\dfrac{3}{4}-\dfrac{23}{44}\\ =\dfrac{3}{5}+\dfrac{3}{11}+\dfrac{3}{7}+\dfrac{2}{97}-\dfrac{1}{35}-\dfrac{3}{4}+\dfrac{23}{44}\\ =\left(\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{1}{35}\right)+\left(\dfrac{3}{11}-\dfrac{3}{4}-\dfrac{23}{44}\right)+\dfrac{2}{97}\\ =\dfrac{21+15-1}{35}+\dfrac{12-33-23}{44}+\dfrac{2}{97}\\ =1+\left(-1\right)+\dfrac{2}{97}\\ =\dfrac{2}{97}\)

2 tháng 7

\(A=2^2+2^4+2^6+...+2^{200}\\ 2^2A=2^4+2^6+...+2^{202}\\ 4A-A=\left(2^4+2^6+2^8+...+2^{202}\right)-\left(2^2+2^4+2^6+...+2^{200}\right)\\ 3A=2^{202}-2^2\) 

\(=>3A+4=2^{202}-2^2+4=2^{202}-4+4=2^{202}\) 

\(=>2^{202}=4^n\\ =>2^{202}=\left(2^2\right)^n\\ =>2^{202}=2^{2n}\\ =>2n=202\\ =>n=101\)

ABCD là hình vuông

=>AB//CD

mà C\(\in\)DE

nên AB//DE

Ta có: DEFG là hình chữ nhật

=>DE//FG

mà AB//DE

nên AB//FG

a: \(\left(x-2\right)\left(3x-1\right)\left(x^2-4x+1\right)\)

\(=\left(3x^2-x-6x+2\right)\left(x^2-4x+1\right)\)

\(=\left(3x^2-7x+2\right)\left(x^2-4x+1\right)\)

\(=3x^4-12x^3+3x^2-7x^3+28x^2-7x+2x^2-8x+2\)

\(=3x^4-19x^3+33x^2-15x+2\)

b: \(x\left(3-4x\right)\left(2x^2-3x\right)\)

\(=\left(-4x^2+3x\right)\left(2x^2-3x\right)\)

\(=-8x^4+12x^3+6x^3-9x^2\)

\(=-8x^4+18x^3-9x^2\)

2 tháng 7

a) 

\(\left(x-2\right)\left(3x-1\right)\left(x^2-4x+1\right)\\ =\left(3x^2-6x-x+2\right)\left(x^2-4x+1\right)\\ =\left(3x^2-7x+2\right)\left(x^2-4x+1\right)\\ =3x^4-12x^3+3x^2-7x^3+28x^2-7x-8x+2\\ =3x^4-19x^3+31x^2-15x+2\) 

b) 

\(x\left(3-4x\right)\left(2x^2-3x\right)\\ =\left(3x-4x^2\right)\left(2x^2-3x\right)\\ =6x^3-9x^2-8x^4+12x^3\\ =-8x^4+18x^3-9x^2\)

2 tháng 7

a) 

\(32< 2^x< 128\\ =>2^5< 2^x< 2^7\\ =>5< x< 7\\ =>x=6\)

b) 

\(2\cdot16\ge2^x>4\\ =>2\cdot2^4\ge2^x>2^2\\ =>2^5\ge2^x>2^2\\ =>5\ge x>2\\ =>x\in\left\{3;4;5\right\}\)

c) 

\(9\cdot27\le3^x\le243\\ =>3^2\cdot3^3\le3^x\le3^5\\ =>3^5\le3^x\le3^5\\ =>5\le x\le5\\ =>x=5\)

d) 

\(x^{2019}=x\\ =>x^{2019}-x=0\\ =>x\left(x^{2018}-1\right)=0\)

TH1: x = 0

TH2: `x^2018-1=0`

`=>x^2018=1`

`=>x^2018=1^2018`

`=>x=1` hoặc `x=-1`

a: \(32< 2^x< 128\)

=>\(2^5< 2^x< 2^7\)

=>5<x<7

mà x là số tự nhiên

nên x=6

b: \(2\cdot16>=2^x>4\)

=>\(2^5>=2^x>2^2\)

=>2<x<=5

mà x là số tự nhiên

nên \(x\in\left\{3;4;5\right\}\)

c: \(9\cdot27< =3^x< =243\)

=>\(243< =3^x< =243\)

=>\(3^x=243=3^5\)

=>x=5

d: \(x^{2019}=x\)

=>\(x\left(x^{2018}-1\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\x^{2018}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^{2018}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

e: \(2^{x+1}+4\cdot2^x=3\cdot2^7\)

=>\(2^x\cdot2+4\cdot2^x=6\cdot2^6\)

=>\(6\cdot2^x=6\cdot2^6\)

=>x=6

f: \(2^{2x}+2^{2x+3}=3^2\cdot8^4\)

=>\(2^{2x}+2^{2x}\cdot8=9\cdot8^4\)

=>\(9\cdot2^{2x}=9\cdot2^{12}\)

=>2x=12

=>x=6

g: \(27^{x+1}=9^{x+5}\)

=>\(3^{3\left(x+1\right)}=3^{2\left(x+5\right)}\)

=>3(x+1)=2(x+5)

=>3x+3=2x+10

=>3x-2x=10-3

=>x=7

h: \(3^{x+2}+5\cdot3^{x+1}=648\)

=>\(3^x\cdot9+5\cdot3^x\cdot3=648\)

=>\(3^x\cdot24=648\)

=>\(3^x=\dfrac{648}{24}=27=3^3\)

=>x=3

2 tháng 7

a) Thay x=2 vào ta có:

\(2^2-4m\cdot2+1=0\\ \Leftrightarrow4-8m+1=0\\ \Leftrightarrow5-8m=0\\ \Leftrightarrow8m=5\\ \Leftrightarrow m=\dfrac{5}{8}\)

b) Thay x=2 vào ta có:

\(3\cdot2^2-5m\cdot2+7\\ \Leftrightarrow12-10m+7=0\\ \Leftrightarrow19-10m=0\\ \Leftrightarrow10m=19\\\Leftrightarrow m=\dfrac{19}{10}\)

a:

Đặt \(x^2-4mx+1=0\left(1\right)\)

Thay x=2 vào (1), ta được:

\(2^2-4m\cdot2+1=0\)

=>\(4-8m+1=0\)

=>5-8m=0

=>8m=5

=>\(m=\dfrac{5}{8}\)

b: Đặt \(3x^2-5mx+7=0\left(2\right)\)

Thay x=2 vào (2), ta được:

\(3\cdot2^2-5m\cdot2+7=0\)

=>12-10m+7=0

=>19-10m=0

=>10m=19

=>\(m=\dfrac{19}{10}\)

Tỉ số giữa Số học sinh khá và cả lớp là:

\(\dfrac{1}{2}\left(1-\dfrac{1}{4}\right)=\dfrac{1}{2}\cdot\dfrac{3}{4}=\dfrac{3}{8}\)

Số học sinh trung bình chiếm: \(1-\dfrac{3}{8}-\dfrac{1}{4}=\dfrac{5}{8}-\dfrac{2}{8}=\dfrac{3}{8}\)(số học sinh cả lớp)

Số học sinh cả lớp là \(24:\dfrac{3}{8}=24\cdot\dfrac{8}{3}=64\left(bạn\right)\)