K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\left(\frac{x-4}{\sqrt{x}-2}+\frac{x\sqrt{x}-8}{4-x}\right):\frac{\left(\sqrt{x}-2\right)^2+2\sqrt{x}}{\sqrt{x}+2}\)

\(=\left(\frac{x-4}{\sqrt{x}-2}-\frac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{x-4\sqrt{x}+4+2\sqrt{x}}{\sqrt{x}+2}\)

\(=\left(\sqrt{x}+2-\frac{x+2\sqrt{x}+4}{\sqrt{x}+2}\right):\frac{x-2\sqrt{x}+4}{\sqrt{x}+2}\)

\(=\frac{\left(\sqrt{x}+2\right)^2-x-2\sqrt{x}-4}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+2}{x-2\sqrt{x}+4}=\frac{x+4\sqrt{x}+4-x-2\sqrt{x}-4}{x-2\sqrt{x}+4}=\frac{2\sqrt{x}}{x-2\sqrt{x}+4}\)

b: \(A-1=\frac{2\sqrt{x}}{x-2\sqrt{x}+4}-1=\frac{2\sqrt{x}-x+2\sqrt{x}-4}{x-2\sqrt{x}+4}=\frac{-x+4\sqrt{x}-4}{x-2\sqrt{x}+1+3}\)

\(=-\frac{\left(x-4\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)^2+3}=\frac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-1\right)^2+3}<0\forall x\) thỏa mãn ĐKXĐ

=>A<1

c: Ta có: \(2\sqrt{x}\ge0\forall x\) thỏa mãn ĐKXĐ

\(x-2\sqrt{x}+4=\left(\sqrt{x}-1\right)^2+3\ge3\forall x\)

=>\(A=\frac{2\sqrt{x}}{x-2\sqrt{x}+4}\ge0\forall x\) thỏa mãn ĐKXĐ

=>0<=A<1

Để A là số nguyên thì A=0

=>x=0(nhận)


Bài 1:

\(A=\sqrt{3+\sqrt{5+2\sqrt3}}+\sqrt{3-\sqrt{5+2\sqrt3}}\)

=>\(A^2=3+\sqrt{5+2\sqrt3}+3-\sqrt{5+2\sqrt3}+2\cdot\sqrt{3^2-\left(5+2\sqrt3\right)}\)

=>\(A^2=6+2\cdot\sqrt{9-5-2\sqrt3}=6+2\cdot\sqrt{4-2\sqrt3}\)

=>\(A^2=6+2\sqrt{\left(\sqrt3-1\right)^2}=6+2\left(\sqrt3-1\right)=4+2\sqrt3=\left(\sqrt3+1\right)^2\)

=>\(A=\sqrt3+1\)

Bài 63:

Đặt \(A=\sqrt{4+\sqrt3}+\sqrt{4-\sqrt3}\)

=>\(A^2=4+\sqrt3+4-\sqrt3+2\cdot\sqrt{4^2-3}=8+2\sqrt{13}\)

=>\(A=\sqrt{8+2\sqrt{13}}\)

\(N=\frac{\sqrt{4+\sqrt3}+\sqrt{4-\sqrt3}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt2}\)

\(=\frac{\sqrt{8+2\sqrt{13}}}{\sqrt{4+\sqrt{13}}}+\sqrt{25-2\cdot5\cdot\sqrt2+2}\)

\(=\sqrt2+\sqrt{\left(5-\sqrt2\right)^2}=\sqrt2+5-\sqrt2=5\)

4: Sửa đề: \(x=\sqrt[3]{3+2\sqrt2}-\sqrt[3]{3-2\sqrt2}\)

=>\(x^3=3+2\sqrt2-\left(3-2\sqrt2\right)+3\cdot x\cdot\sqrt[3]{\left(3+2\sqrt2\right)\left(3-2\sqrt2\right)}\)

=>\(x^3=6+3\cdot x\cdot1=3x+6\)

\(y=\sqrt[3]{17+12\sqrt2}-\sqrt[3]{17-12\sqrt2}\)

=>\(y^3=17+12\sqrt2-\left(17-12\sqrt2\right)-3\cdot y\cdot\sqrt[3]{\left(17+12\sqrt2\right)\left(17-12\sqrt2\right)}\)

=>\(y^3=34-3y\)

\(H=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)\)

\(=\left(x-y\right)\left(x^2-2xy+y^2+3xy+3\right)=\left(x-y\right)\left(x^2+xy+y^2+3\right)\)

\(=\left(x^3-y^3\right)+3\left(x-y\right)\)

=(3x+6-34+3y)+3x-3y

=3x+3y+3x-3y-28

=6x-28

Bài 3:

a: \(A=\sqrt{13+30\cdot\sqrt{2+\sqrt{9+4\sqrt2}}}\)

\(=\sqrt{13+30\cdot\sqrt{2+\sqrt{8+2\cdot2\sqrt2\cdot1+1}}}\)

\(=\sqrt{13+30\cdot\sqrt{2+\sqrt{\left(2\sqrt2+1\right)^2}}}\)

\(=\sqrt{13+30\cdot\sqrt{2+\left(2\sqrt2+1\right)}}\)

\(=\sqrt{13+30\cdot\sqrt{2+2\sqrt2+1}}\)

\(=\sqrt{13+30\cdot\sqrt{\left(\sqrt2+1\right)^2}}\)

\(=\sqrt{13+30\cdot\left(\sqrt2+1\right)}=\sqrt{43+30\sqrt2}\)

\(=\sqrt{25+2\cdot5\cdot3\sqrt2+18}=\sqrt{\left(5+3\sqrt2\right)^2}=5+3\sqrt2\)

b: \(B=\frac{3+\sqrt5}{2\sqrt2+\sqrt{3+\sqrt5}}+\frac{3-\sqrt5}{2\sqrt2-\sqrt{3-\sqrt5}}\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt{6+2\sqrt5}}+\frac{3-\sqrt5}{4-\sqrt{6-2\sqrt5}}\right)\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt{\left(\sqrt5+1\right)^2}}+\frac{3-\sqrt5}{4-\sqrt{\left(\sqrt5-1\right)^2}}\right)\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\left(\sqrt5+1\right)^{}}+\frac{3-\sqrt5}{4-\left(\sqrt5-1\right)^{}}\right)\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt5+1^{}}+\frac{3-\sqrt5}{4-\sqrt5+1^{}}\right)=\sqrt2\left(\frac{3+\sqrt5}{5+\sqrt5^{}}+\frac{3-\sqrt5}{5-\sqrt5^{}}\right)\)

\(=\frac{1}{\sqrt2}\left(\frac{2\left(3+\sqrt5\right)}{5+\sqrt5}+\frac{2\left(3-\sqrt5\right)}{5-\sqrt5}\right)=\frac{1}{\sqrt2}\cdot\left(\frac{6+2\sqrt5}{5+\sqrt5}+\frac{6-2\sqrt5}{5-\sqrt5}\right)\)

\(=\frac{1}{\sqrt2}\left(\frac{\left(\sqrt5+1\right)^2}{\sqrt5\left(\sqrt5+1\right)}+\frac{\left(\sqrt5-1\right)^2}{\sqrt5\left(\sqrt5-1\right)}\right)=\frac{1}{\sqrt2}\cdot\frac{\sqrt5+1+\sqrt5-1}{\sqrt5}=\frac{1}{\sqrt2}\cdot2=\sqrt2\)

c: \(C=\sqrt{4+\sqrt{10+2\sqrt5}}+\sqrt{4-\sqrt{10+2\sqrt5}}\)

=>\(C^2=4+\sqrt{10+2\sqrt5}+4-\sqrt{10+2\sqrt5}+2\cdot\sqrt{4^2-\left(10+2\sqrt5\right)}\)

=>\(C^2=8+2\cdot\sqrt{16-10-2\sqrt5}=8+2\cdot\sqrt{6-2\sqrt5}\)

=>\(C^2=8+2\cdot\left(\sqrt5-1\right)=6+2\sqrt5=\left(\sqrt5+1\right)^2\)

=>\(C=\sqrt5+1\)

f: \(F=\sqrt[3]{26+15\sqrt3}-\sqrt[3]{26-15\sqrt3}\)

\(=\sqrt[3]{2^3+3\cdot2^2\cdot\sqrt3+3\cdot2\cdot\left(\sqrt3\right)^2+3\sqrt3}-\sqrt[3]{2^3-3\cdot2^2\cdot\sqrt3+3\cdot2\cdot\left(\sqrt3\right)^2-3\sqrt3}\)

\(=\sqrt[3]{\left(2+\sqrt3\right)^3}-\sqrt[3]{\left(2-\sqrt3\right)^3}=2+\sqrt3-\left(2-\sqrt3\right)=2\sqrt3\)


4: Sửa đề: \(x=\sqrt[3]{3+2\sqrt2}-\sqrt[3]{3-2\sqrt2}\)

=>\(x^3=3+2\sqrt2-\left(3-2\sqrt2\right)+3\cdot x\cdot\sqrt[3]{\left(3+2\sqrt2\right)\left(3-2\sqrt2\right)}\)

=>\(x^3=6+3\cdot x\cdot1=3x+6\)

\(y=\sqrt[3]{17+12\sqrt2}-\sqrt[3]{17-12\sqrt2}\)

=>\(y^3=17+12\sqrt2-\left(17-12\sqrt2\right)-3\cdot y\cdot\sqrt[3]{\left(17+12\sqrt2\right)\left(17-12\sqrt2\right)}\)

=>\(y^3=34-3y\)

\(H=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)\)

\(=\left(x-y\right)\left(x^2-2xy+y^2+3xy+3\right)=\left(x-y\right)\left(x^2+xy+y^2+3\right)\)

\(=\left(x^3-y^3\right)+3\left(x-y\right)\)

=(3x+6-34+3y)+3x-3y

=3x+3y+3x-3y-28

=6x-28

Bài 3:

a: \(A=\sqrt{13+30\cdot\sqrt{2+\sqrt{9+4\sqrt2}}}\)

\(=\sqrt{13+30\cdot\sqrt{2+\sqrt{8+2\cdot2\sqrt2\cdot1+1}}}\)

\(=\sqrt{13+30\cdot\sqrt{2+\sqrt{\left(2\sqrt2+1\right)^2}}}\)

\(=\sqrt{13+30\cdot\sqrt{2+\left(2\sqrt2+1\right)}}\)

\(=\sqrt{13+30\cdot\sqrt{2+2\sqrt2+1}}\)

\(=\sqrt{13+30\cdot\sqrt{\left(\sqrt2+1\right)^2}}\)

\(=\sqrt{13+30\cdot\left(\sqrt2+1\right)}=\sqrt{43+30\sqrt2}\)

\(=\sqrt{25+2\cdot5\cdot3\sqrt2+18}=\sqrt{\left(5+3\sqrt2\right)^2}=5+3\sqrt2\)

b: \(B=\frac{3+\sqrt5}{2\sqrt2+\sqrt{3+\sqrt5}}+\frac{3-\sqrt5}{2\sqrt2-\sqrt{3-\sqrt5}}\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt{6+2\sqrt5}}+\frac{3-\sqrt5}{4-\sqrt{6-2\sqrt5}}\right)\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt{\left(\sqrt5+1\right)^2}}+\frac{3-\sqrt5}{4-\sqrt{\left(\sqrt5-1\right)^2}}\right)\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\left(\sqrt5+1\right)^{}}+\frac{3-\sqrt5}{4-\left(\sqrt5-1\right)^{}}\right)\)

\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt5+1^{}}+\frac{3-\sqrt5}{4-\sqrt5+1^{}}\right)=\sqrt2\left(\frac{3+\sqrt5}{5+\sqrt5^{}}+\frac{3-\sqrt5}{5-\sqrt5^{}}\right)\)

\(=\frac{1}{\sqrt2}\left(\frac{2\left(3+\sqrt5\right)}{5+\sqrt5}+\frac{2\left(3-\sqrt5\right)}{5-\sqrt5}\right)=\frac{1}{\sqrt2}\cdot\left(\frac{6+2\sqrt5}{5+\sqrt5}+\frac{6-2\sqrt5}{5-\sqrt5}\right)\)

\(=\frac{1}{\sqrt2}\left(\frac{\left(\sqrt5+1\right)^2}{\sqrt5\left(\sqrt5+1\right)}+\frac{\left(\sqrt5-1\right)^2}{\sqrt5\left(\sqrt5-1\right)}\right)=\frac{1}{\sqrt2}\cdot\frac{\sqrt5+1+\sqrt5-1}{\sqrt5}=\frac{1}{\sqrt2}\cdot2=\sqrt2\)

c: \(C=\sqrt{4+\sqrt{10+2\sqrt5}}+\sqrt{4-\sqrt{10+2\sqrt5}}\)

=>\(C^2=4+\sqrt{10+2\sqrt5}+4-\sqrt{10+2\sqrt5}+2\cdot\sqrt{4^2-\left(10+2\sqrt5\right)}\)

=>\(C^2=8+2\cdot\sqrt{16-10-2\sqrt5}=8+2\cdot\sqrt{6-2\sqrt5}\)

=>\(C^2=8+2\cdot\left(\sqrt5-1\right)=6+2\sqrt5=\left(\sqrt5+1\right)^2\)

=>\(C=\sqrt5+1\)

f: \(F=\sqrt[3]{26+15\sqrt3}-\sqrt[3]{26-15\sqrt3}\)

\(=\sqrt[3]{2^3+3\cdot2^2\cdot\sqrt3+3\cdot2\cdot\left(\sqrt3\right)^2+3\sqrt3}-\sqrt[3]{2^3-3\cdot2^2\cdot\sqrt3+3\cdot2\cdot\left(\sqrt3\right)^2-3\sqrt3}\)

\(=\sqrt[3]{\left(2+\sqrt3\right)^3}-\sqrt[3]{\left(2-\sqrt3\right)^3}=2+\sqrt3-\left(2-\sqrt3\right)=2\sqrt3\)


Kẻ OF⊥CD tại F. Gọi E là giao điểm của OF và AB. Gọi H là giao điểm của AB và OM

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra OM là đường trung trực của AB

=>OM⊥AB tại H và H là trung điểm của AB

Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2=R^2\left(3\right)\)

Xét ΔOFM vuông tại F và ΔOHE vuông tại H có

\(\hat{FOM}\) chung

Do đó: ΔOFM~ΔOHE

=>\(\frac{OF}{OH}=\frac{OM}{OE}\)

=>\(OF\cdot OE=OH\cdot OM\left(4\right)\)

Từ (3),(4) suy ra \(OF\cdot OE=R^2=OD^2\)

=>\(\frac{OF}{OD}=\frac{OD}{OE}\)

Xét ΔOFD và ΔODE có

\(\frac{OF}{OD}=\frac{OD}{OE}\)

\(\hat{FOD}\) chung

Do đó: ΔOFD~ΔODE

=>\(\hat{OFD}=\hat{ODE}\)

=>\(\hat{ODE}=90^0\)

=>ED là tiếp tuyến của (O)

ΔOCD cân tại O

mà OF là đường cao

nên OF là phân giác của góc COD

Xét ΔODE và ΔOCE có

OD=OC

\(\hat{DOE}=\hat{COE}\)

OE chung

Do đó: ΔODE=ΔOCE

=>\(\hat{ODE}=\hat{OCE}\)

=>\(\hat{OCE}=90^0\)

=>EC là tiếp tuyến tại C của (O)

Do đó: AB,hai tiếp tuyến tại D và C của (O) đồng quy tại E

Bài 5:

a: ĐKXĐ: x≠-2

Ta có: \(1+\frac{1}{x+2}=\frac{12}{x^3+8}\)

=>\(1+\frac{1}{x+2}=\frac{12}{\left(x+2\right)\left(x^2-2x+4\right)}\)

=>\(\frac{x^3+8}{\left(x+2\right)\left(x^2-2x+4\right)}+\frac{x^2-2x+4}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{12}{\left(x+2\right)\left(x^2-2x+4\right)}\)

=>\(x^3+8+x^2-2x+4=12\)

=>\(x^3+x^2-2x=0\)

=>\(x\left(x^2+x-2\right)=0\)

=>x(x+2)(x-1)=0

=>\(\left[\begin{array}{l}x=0\\ x+2=0\\ x-1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\left(nhận\right)\\ x=-2\left(loại\right)\\ x=1\left(nhận\right)\end{array}\right.\)

b: ĐKXĐ: x<>2/7

Ta có: \(\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)

=>\(\left(2x+3\right)\cdot\frac{3x+8+2-7x}{2-7x}=\left(x-5\right)\cdot\frac{3x+8+2-7x}{2-7x}\)

=>\(\left(2x+3\right)\cdot\frac{-4x+10}{2-7x}=\left(x-5\right)\cdot\frac{-4x+10}{2-7x}\)

=>\(\left(2x+3\right)\left(-4x+10\right)-\left(x-5\right)\left(-4x+10\right)=0\)

=>(-4x+10)(2x+3-x+5)=0

=>-2(2x-5)(x+8)=0

=>(2x-5)(x+8)=0

=>\(\left[\begin{array}{l}2x-5=0\\ x+8=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=\frac52\left(nhận\right)\\ x=-8\left(nhận\right)\end{array}\right.\)

Bài 4:

a: ĐKXĐ: x∉{2;-1}

Ta có: \(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)

=>\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{\left(x-2\right)\left(x+1\right)}+1\)

=>\(\frac{\left(x+2\right)\left(x-2\right)+3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{3}{\left(x-2\right)\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}\)

=>(x-2)(x+2)+3(x+1)=3+(x-2)(x+1)

=>\(x^2-4+3x+3=3+x^2-x-2\)

=>3x-1=-x+1

=>4x=2

=>\(x=\frac12\) (nhận)

b: ĐKXĐ: x∉{5;-6}

Ta có: \(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{x^2+x-30}\)

=>\(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)

=>\(\frac{\left(x+6\right)^2+\left(x-5\right)^2}{\left(x+6\right)\left(x-5\right)}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)

=>\(\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)

=>\(x^2+12x+36+x^2-10x+25=2x^2+23x+61\)

=>2x+61=23x+61

=>-21x=0

=>x=0(nhận)

Bài 3:

a: ĐKXĐ: x∉{5;-6}

Ta có: \(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{x^2+x-30}\)

=>\(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)

=>\(\frac{\left(x+6\right)^2+\left(x-5\right)^2}{\left(x+6\right)\left(x-5\right)}=\frac{2x^2+23x+61}{\left(x+6\right)\left(x-5\right)}\)

=>\(\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)

=>\(x^2+12x+36+x^2-10x+25=2x^2+23x+61\)

=>2x+61=23x+61

=>-21x=0

=>x=0(nhận)

b: ĐKXĐ: x∉{3;-3}

Ta có: \(\frac{x^2-x}{x+3}-\frac{x_{}^2}{x-3}=\frac{7x^2-3x}{9-x^2}\)

=>\(\frac{\left(x^2-x\right)\left(x-3\right)-x^2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{-7x^2+3x}{\left(x-3\right)\left(x+3\right)}\)

=>\(\left(x^2-x\right)\left(x-3\right)-x^2\left(x+3\right)=-7x^2+3x\)

=>\(x^3-3x^2-x^2+3x-x^3-3x^2+7x^2-3x=0\)

=>0x=0(luôn đúng)

Vậy: x∉{3;-3}

Bài 2:

a: ĐKXĐ: x∉{-1;2}

ta có: \(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)

=>\(\frac{\left(x+2\right)\left(x-2\right)+3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{3+x^2-x-2}{\left(x-2\right)\left(x+1\right)}\)

=>\(\left(x+2\right)\left(x-2\right)+3\left(x+1\right)=x^2-x+1\)

=>\(x^2-4+3x+3=x^2-x+1\)

=>3x-1=-x+1

=>4x=2

=>\(x=\frac12\) (nhận)

b: ĐKXĐ: x∉{0;2}

ta có: \(\frac{5-x}{4x^2-8x}+\frac78=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)

=>\(\frac{5-x}{4x\left(x-2\right)}+\frac78=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8\left(x-2\right)}\)

=>\(\frac{4\left(5-x\right)}{16x\left(x-2\right)}+\frac{7\cdot2x\cdot\left(x-2\right)}{8\cdot2x\cdot\left(x-2\right)}=\frac{8\left(x-1\right)}{8\cdot2x\cdot\left(x-2\right)}+\frac{2x}{8\cdot2x\cdot\left(x-2\right)}\)

=>4(5-x)+14x(x-2)=8(x-1)+2x

=>\(20-4x+14x^2-28x=8x-8+2x\)

=>\(14x^2-32x+20-10x+8=0\)

=>\(14x^2-42x+28=0\)

=>\(x^2-3x+2=0\)

=>(x-2)(x-1)=0

=>x=2(loại) hoặc x=1(nhận)

Bài 1:

a: ĐKXĐ: x∉{1/4;-1/4}

ta có: \(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{6x+8}{16x^2-1}\)

=>\(\frac{-3}{4x-1}-\frac{2}{4x+1}=\frac{-6x-8}{\left(4x-1\right)\left(4x+1\right)}\)

=>\(\frac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}-\frac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}=\frac{-6x-8}{\left(4x-1\right)\left(4x+1\right)}\)

=>-3(4x+1)-2(4x-1)=-6x-8

=>-12x-3-8x+2=-6x-8

=>-20x-1=-6x-8

=>-14x=-7

=>x=1/2(nhận)

b: ĐKXĐ: x∉{1/5;3/5}

Ta có: \(\frac{3}{5x-1}+\frac{2}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)

=>\(\frac{3}{5x-1}-\frac{2}{5x-3}=\frac{-4}{\left(5x-1\right)\left(5x-3\right)}\)

=>\(\frac{3\left(5x-3\right)}{\left(5x-1\right)\left(5x-3\right)}-\frac{2\left(5x-1\right)}{\left(5x-1\right)\left(5x-3\right)}=\frac{-4}{\left(5x-1\right)\left(5x-3\right)}\)

=>3(5x-3)-2(5x-1)=-4

=>15x-9-10x+2=-4

=>5x-7=-4

=>5x=3

=>x=3/5(loại)

16 tháng 6

Ta có:

\(4x^3+6x^2-12x+8=0\)

\(\Rightarrow2x^3+3x^2-6x+4=0\)

\(\Rightarrow(x+1)(2x^2+x-4)=0\)

\(\Rightarrow\begin{cases}x+1=0\\ 2x^2+x-4=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-1\\ x=\frac{-1\pm\sqrt{33}}{4}\end{cases}\)

Vậy \(x\in\left\lbrace-1;\dfrac{-1\pm\sqrt{33}}{4}\right\rbrace\)

15 tháng 6

2\(x\) - 6 = - 5\(x\) (\(x-3\))

2\(x\) - 6 = - 5\(x^2\) + 15\(x\)

5\(x^2\) - 15\(x\) + 2\(x\) - 6 = 0

5\(x^2\) - (15\(x-2x\)) - 6 = 0

5\(x^2\) - 13\(x\) - 6 = 0

Δ = 13\(^2\) - 4.5.(-6)

Δ = 169 + 20.6

Δ = 169 + 120

Δ = 289

Phương trình có hai nghiệm phân biệt:

\(x1\) = \(\frac{-\left(-13\right)+\sqrt{289}}{2.5}\)

\(x1\) = \(\frac{13+17}{10}\)

\(x1\) = \(\frac{30}{10}\)

\(x1\) = 3

\(x2=\) \(\frac{-\left(-13\right)-\sqrt{289}}{2.5}\)

\(x2=\frac{13-17}{10}\)

\(x2=\frac{-4}{10}\)

\(x2=-0,4\)

Vậy phương trình có hai nghiệm là: \(x1=3;x2=-0,4\)


2x-6=-5x(x-3)

=>\(2\left(x-3\right)+5x\left(x-3\right)=0\)

=>(x-3)(5x+2)=0

=>\(\left[\begin{array}{l}x-3=0\\ 5x+2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=3\\ x=-\frac25\end{array}\right.\)

Để (d1) cắt (d2) thì \(\frac{m}{2m}<>\frac{m-1}{m+1}\)

=>\(\frac{m-1}{m+1}<>\frac12\)

=>\(\frac{m-1}{m+1}-\frac12<>0\)

=>\(\frac{2m-2-m-1}{2\left(m+1\right)}<>0\)

=>\(\frac{m-3}{m+1}<>0\)

=>\(\begin{cases}m-3<>0\\ m+1<>0\end{cases}\Rightarrow m\notin\left\lbrace3;-1\right\rbrace\)

Để (d1)//(d2) thì \(\frac{m}{2m}=\frac{m-1}{m+1}<>\frac{3m+4}{m-4}\)

=>\(\begin{cases}\frac{m-1}{m+1}=\frac12\\ \frac{3m+4}{m-4}<>\frac12\end{cases}\Rightarrow\begin{cases}2\left(m-1\right)=m+1\\ \frac{3m+4}{m-4}<>\frac12\end{cases}\)

=>\(\begin{cases}2m-2=m+1\\ \frac{3m+4}{m-4}<>\frac12\end{cases}\Rightarrow\begin{cases}m=3\\ \frac{3m+4}{m-4}<>\frac12\end{cases}\)

=>m=3

Để (d1) trùng với (d2) thì \(\frac{m}{2m}=\frac{m-1}{m+1}=\frac{3m+4}{m-4}\)

=>\(\frac{m-1}{m+1}=\frac{3m+4}{m-4}=\frac12\)

=>2(m-1)=m+1 và 2(3m+4)=m-4

=>2m-2=m+1 và 6m+8=m-4

=>m=3 và 5m=-12

=>m∈∅