K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 3 2022

\(\left(1+a^2b^2\right)\left(\dfrac{4}{a^2}+\dfrac{3}{b^2}\right)\ge2\sqrt{a^2b^2}.2\sqrt{\dfrac{12}{a^2b^2}}=8\sqrt{3}\) (đpcm)

Dấu "=" xảy ra khi \(\left(a^2;b^2\right)=\left(\dfrac{2}{\sqrt{3}};\dfrac{\sqrt{3}}{2}\right)\) 

NV
1 tháng 3 2022

\(p=\dfrac{a+b+c}{2}=15\)

\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\sqrt{15\left(15-8\right)\left(15-10\right)\left(15-12\right)}=15\sqrt{7}\)

\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{10^2+12^2-8^2}{2.10.12}=\dfrac{3}{4}\Rightarrow A\approx41^024'\)

27 tháng 2 2022

Đáp án:

 xin câu trả lời hay nhất nhá

Giải thích các bước giải:

1≠01≠0  ⇔ 1≠01≠0  

ΔΔ > 0      ⇔ m>6m>6

S > 0          ⇔ m>0m>0

P > 0          ⇔ m>−3

27 tháng 2 2022

Ta xét \(\sqrt{x}+\sqrt{y}=4\)

Ta thấy để \(x,y\)là các số thực thì \(x,y\)chấp nhận các số sau:

\(\hept{\begin{cases}x=4,y=4\\x=1,y=9;x=9,y=1\\x=0,y=16;x=16,y=0\end{cases}}\)

Tiếp tục xét trường hợp \(\sqrt{x+5}+\sqrt{y+5}=6\)

Ta thấy để \(x,y\)chấp nhận cả 2 vế thì chỉ có \(x=4;y=4\)