Tìm BCNN của các số sau:
a) 98,56 và 24
b)50,600 và 120
c)168,120 và 144
Giúp tớ gấp ạa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 7a.
$x(y+1)=7$
Với $x,y$ là stn thì $x, y+1$ cũng là stn. Mà tích $x(y+1)=7$ nên ta có các TH sau:
TH1: $x=1, y+1=7\Rightarrow x=1; y=6$ (tm)
TH2: $x=7, y+1=1\Rightarrow x=7; y=0$ (tm)
Bài 7b.
Với $x,y$ là stn thì $x-3, y+2$ là số nguyên. Mà $y+2>0$ và tích $(x-3)(y+2)=15>0$ nên $x-3>0$. Khi đó ta có các TH sau:
TH1: $x-3=1; y+2=15\Rightarrow x=4; y=13$
TH2: $x-3=3; y+2=5\Rightarrow x=6; y=3$
TH3: $x-3=5; y+2=3\Rightarrow x=8; y=1$
TH4: $x-3=15; y+2=1\Rightarrow x=18; y=-1<0$ (loại)
Vậy..................
Bài 7c.
$xy+x+y=2$
$x(y+1)+y=2$
$\Rightarrow x(y+1)+(y+1)=3$
$\Rightarrow (x+1)(y+1)=3$
Với $x,y$ là stn thì $x+1, y+1$ cũng là stn. Do đó ta có các TH sau:
TH1: $x+1=1, y+1=3\Rightarrow x=0; y=2$
TH2: $x+1=3; y+1=1\Rightarrow x=2; y=0$
Vậy............
Bài 7d:
Với $x,y$ là stn thì $8-x, 4y+1$ là số nguyên.
Mà $4y+1>0; (8-x)(4y+1)=20>0$ nên $8-x>0$.
Mặt khác $4y+1$ luôn lẻ với mọi $y$ nên ta xét các TH sau:
TH1: $4y+1=1; 8-x=20\Rightarrow y=0; x=-12<0$ (loại)
TH2: $4y+1=5; 8-x=4\Rightarrow y=1; x=4$ (thỏa mãn)
\(\overline{1a5b}\) ⋮ 5; 9
\(\overline{1a5b}\) ⋮ 5 ⇒ b = 0; \(\overline{1a5b}\) ⋮ 9 ⇒ 1 + a + 5 + b ⋮ 9 ⇒ 1 + a + 5 + 0 ⋮ 9
⇒ 6 + a ⋮ 9
⇒ a = 3
Thay a = 3; b = 0 vào biểu thức: \(\overline{1a5b}\) ta có: \(\overline{1a5b}\) = 1350
\(\text{Ta có:}\)
\(\text{8=23; 24=23.3; 39=3.13}\)
\(\text{=> BCNN(3,24,39) = 23.3.13=312}\)
\(\text{Vậy BCNN(8,24,39) là 312}\)
Gọi x (tổ) là số tổ nhiều nhất có thể chia (x ∈ ℕ*)
⇒ x = ƯCLN(253; 348)
Ta có:
252 = 2².3².7
348 = 2².3.29
⇒ x = ƯCLN(252; 348) = 2².3 = 12
Vậy số tổ nhiều nhất có thể chia là 12 tổ
Mỗi tổ có:
252 : 12 = 21 (nam)
348 : 12 = 29 (nữ)
Lời giải:
Ta có:
$2a+1\vdots a+3$
$\Rightarrow 2(a+3)-5\vdots a+3$
$\Rightarrow 5\vdots a+3$
$\Rightarrow a+3\in \left\{1; -1;5; -5\right\}$
$\Rightarrow a\in \left\{-2; -4; 2; -8\right\}$
Bài 1:
a. $196:4-12.(-5)=49-(-60)=49+60=109$
b. $2^2.5+(49-7^2)=4.5+(49-49)=20+0=20$
c. $29(15-34)-15(29-34)=29.15-29.34-15.29+15.34$
$=(29.15-15.29)+(15.34-29.34)$
$=0+34(15-29)=34.-14=-476$
a, 98; 56; 24
98 = 2.72
56 = 23.7
24 = 23.3
BCNN(98; 56;24) = 23.3.72 = 1176
b, 50; 600; 120
50 = 2.52
600 = 23.3.52
120 = 23.3.5
BCNN(50; 600;120) =23.3.52= 600