Tìm số tự nhiên lớn nhất có 4 chữ số chia hết cho cả 5, 7, 9
Mik cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) -x - 3 = 7
-x = 7 + 3
-x = 10
x = -10
2) x + 5 = -10
x = -10 - 5
x = -15
3) 2x - 7 = 713
2x = 713 + 7
2x = 720
x = 720 : 2
x = 360
4) -129 - (35 - x) = 55
35 - x = -129 - 55
35 - x = -184
x = 35 - (-184)
x = 219
5) 103 - x = 16 - (13 - 8)
103 - x = 16 - 5
103 - x = 11
x = 103 - 11
x = 192
\(\left(12+x\right)-\left(22+x\right)\)
\(=12+x-22-x\)
\(=-10\)
Vậy giá trị của biểu thức đã cho là \(-10\) với mọi \(x\)
\(ƯCLN\left(1;2;3;...;100\right)+ƯCLN\left(1^2;2^2;3^2;...;100^2\right)+ƯCLN\left(1^3;2^3;3^3;...;100^2\right)+...+ƯCLN\left(1^{100};2^{100};3^{100};...;100^{100}\right)\)
\(=1+1+1+...+1\) (100 chữ số 1)
\(=100\)
Bài 10
a) \(5-2x=13\)
\(2x=5-13\)
\(2x=-8\)
\(x=-\dfrac{8}{2}\)
\(x=-4\)
b) \(-45:\left(3x-17\right)=\left(-3\right)^2\)
\(-45:\left(3x-17\right)=9\)
\(3x-17=-45:9\)
\(3x-17=-5\)
\(3x=-5+17\)
\(3x=12\)
\(x=\dfrac{12}{3}\)
\(x=4\)
c) \(-12x-23=\left(-3\right)^3+\left(-7\right).8\)
\(-12x-23=-27-56\)
\(-12x-23=-83\)
\(-12x=-83+23\)
\(-12x=-60\)
\(x=\dfrac{-60}{-12}\)
\(x=5\)
d) \(x^2-16=3^8:3^6\)
\(x^2-16=9\)
\(x^2=9+16\)
\(x^2=25\)
\(x=5;x=-5\)
e) \(x^3+15=-12\)
\(x^3=-12-15\)
\(x^3=-27\)
\(x^3=\left(-3\right)^3\)
\(x=-3\)
f) \(3x^2-7=5\)
\(3x^2=5+7\)
\(3x^2=12\)
\(x^2=\dfrac{12}{3}\)
\(x^2=4\)
\(x=2;x=-2\)
g) \(\left(x-5\right)\left(x^2-9\right)=0\)
\(x-5=0;x^2-9=0\)
*) \(x-5=0\)
\(x=5\)
*) \(x^2-9=0\)
\(x^2=9\)
\(x=-3;x=3\)
Vậy \(x=-3;x=3;x=5\)
Bài 9
a) \(\left(x-2\right)\left(y+3\right)=5\)
\(\Rightarrow\left(x-2;y+3\right)\in\left\{\left(1;5\right);\left(-1;-5\right);\left(5;1\right);\left(-5;-1\right)\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(3;2\right);\left(1;-8\right);\left(7;-2\right);\left(-3;-4\right)\right\}\)
b) \(\left(x+4\right)\left(y-5\right)=3\)
\(\Rightarrow\left(x+4;y-5\right)\in\left\{\left(1;3\right)\left(-1;-3\right);\left(3;1\right);\left(-3;-1\right)\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(-3;8\right);\left(-5;2\right);\left(-1;6\right);\left(-7;4\right)\right\}\)
c) \(\left(2x+1\right)\left(y-3\right)=8\)
\(\Rightarrow\left(2x+1;y-3\right)\in\left\{\left(-8;-1\right);\left(-4;-2\right);\left(-2;-4\right);\left(-1;-8\right);\left(1;8\right);\left(2;4\right)\left(4;2\right);\left(8;1\right)\right\}\)
\(\Rightarrow\left(2x;y\right)\in\left\{\left(-9;2\right);\left(-5;1\right);\left(-3;-1\right);\left(-2;-5\right);\left(0;11\right);\left(1;7\right);\left(3;5\right);\left(7;4\right)\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(-\dfrac{9}{2};2\right);\left(-\dfrac{5}{2};1\right);\left(-\dfrac{3}{2};-1\right);\left(-1;-5\right);\left(0;11\right);\left(\dfrac{1}{2};7\right);\left(\dfrac{3}{2};5\right);\left(\dfrac{7}{2};4\right)\right\}\)
Mà \(x;y\in Z\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(-1;-5\right);\left(0;11\right)\right\}\)
d) \(\left(3x-2\right)\left(2y-3\right)=12\)
\(\Rightarrow\left(3x-2;2y-3\right)\in\left\{\left(-12;-1\right);\left(-6;-2\right);\left(-4;-3\right);\left(-3;-4\right);\left(-2;-6\right);\left(-1;-12\right);\left(1;12\right);\left(2;6\right);\left(3;4\right);\left(4;3\right);\left(6;2\right);\left(12;1\right)\right\}\)
\(\Rightarrow\left(3x;2y\right)\in\left\{\left(-10;2\right);\left(-4;1\right);\left(-2;0\right);\left(-1;-1\right);\left(0;-3\right);\left(1;-9\right);\left(3;15\right);\left(4;9\right);\left(5;7\right);\left(6;6\right);\left(8;5\right);\left(14;4\right)\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(-\dfrac{10}{3};1\right);\left(-\dfrac{4}{3};\dfrac{1}{2}\right);\left(-\dfrac{2}{3};0\right);\left(-\dfrac{1}{3};-\dfrac{1}{2}\right);\left(0;-\dfrac{3}{2}\right);\left(\dfrac{1}{3};-\dfrac{9}{2}\right);\left(1;\dfrac{15}{2}\right);\left(\dfrac{4}{3};\dfrac{9}{2}\right);\left(\dfrac{5}{3};\dfrac{7}{2}\right);\left(2;3\right):\left(\dfrac{8}{3};\dfrac{5}{2}\right);\left(\dfrac{14}{3};2\right)\right\}\)
Mà \(x,y\in Z\)
\(\Rightarrow\left(x;y\right)=\left(2;3\right)\)
e) \(\left(x+7\right)\left(2x-y\right)=3\)
\(\Rightarrow\left(x+7;2x-y\right)\in\left\{\left(-3;-1\right);\left(-1;-3\right);\left(1;3\right);\left(3;1\right)\right\}\)
\(\Rightarrow\left(x;2x-y\right)\in\left\{\left(-10;-1\right);\left(-8;-3\right);\left(-6;3\right);\left(-4;1\right)\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(-10;-19\right);\left(-8;-13\right);\left(-6;-15\right);\left(-4;-9\right)\right\}\)
f) \(\left(2x-1\right)\left(y^2-13\right)=4\)
\(\Rightarrow\left(2x-1;y^2-13\right)\in\left\{\left(-4;-1\right);\left(-2;-2\right);\left(-1;-4\right);\left(1;4\right);\left(2;2\right)\left(4;1\right)\right\}\)
\(\Rightarrow\left(2x;y^2\right)\in\left\{\left(-3;12\right);\left(-1;11\right);\left(0;7\right);\left(2;17\right);\left(3;15\right);\left(5;14\right)\right\}\)
Do \(y\in Z\Rightarrow y^2\) là số chính phương
Mà \(12;11;7;17;15;14\) không phải số chính phương
\(\Rightarrow\) Không tìm được cặp giá trị \(\left(x;y\right)\in Z\) thỏa mãn yêu cầu đề bài
Lời giải:
$B=1+(5+5^2+5^3)+(5^4+5^5+5^6)+....+(5^{88}+5^{89}+5^{90})$
$=1+5(1+5+5^2)+5^4(1+5+5^2)+....+5^{88}(1+5+5^2)$
$=1+(1+5+5^2)(5+5^4+....+5^{88})$
$=1+31(5+5^4+...+5^{88})\not\vdots 31$
Ta có đpcm.
(-134)+51.134+(-134).48
=134.(-1)+51.134+134.(-48)
=134.[(-1)+51+(-48)]
=134.2
=268
Lời giải:
Gọi số tự nhiên cần tìm là $a$
$a\vdots 5,7,9$
$\Rightarrow a=BC(5,7,9)$
$\Rightarrow a\vdots BCNN(5,7,9)$
$\Rightarrow a\vdots 315$
Vậy $a=315k$ với $k$ là stn.
Vì $a$ có 4 chữ số nên $315k< 10000$
$\Rightarrow k< 31,7$
Để $a$ lớn nhất thì $k$ lớn nhất
$\Rightarrow k=31$
$a=315.31=9756$
a ⋮ 5; 7; 9 ⇒ a \(\in\) BC(5; 7;9)
5= 5; 7 = 7; 9 =32 ⇒ BCNN(5; 7; 9) = 32.5.7 = 315
a \(\in\) BC(315) = {0; 315; 630;1890;...;9765;10080}
Vì a là số tự nhiên lớn nhất có 4 chữ số nên a = 9765