K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 12:

Thay x=1 vào A(x), ta được:

\(A\left(1\right)=\left(3-4\cdot1+1^2\right)^{2004}\cdot\left(3+4\cdot1+1^2\right)^{2005}=0\)

=>Tổng của tất cả các hệ số là 0

a: \(3\cdot9\cdot\left(-27\right)=3\cdot3^2\cdot\left(-3^3\right)=-3^6\)

b: \(5\cdot25\cdot\left(-125\right)^2=5\cdot5^2\cdot\left(5^3\right)^2=5^9\)

c: \(0,5\cdot\left(-0,25\right)\cdot0,0625=0,5\cdot\left(-1\right)\cdot\left(0,5\right)^2\cdot\left(0,5\right)^4\)

\(=-\left(0,5\right)^7\)

d: \(2\cdot32\cdot\left(-1024\right)=2\cdot2^5\cdot\left(-1\right)\cdot2^{10}=-2^{16}\)

e: \(49\cdot7^3\cdot\left(-7\right)^3=7^2\cdot7^3\cdot\left(-1\right)\cdot7^3=-7^8\)

f: \(\dfrac{3}{4}\cdot\dfrac{9}{16}\cdot\dfrac{27}{64}=\dfrac{3}{4}\cdot\left(\dfrac{3}{4}\right)^2\cdot\left(\dfrac{3}{4}\right)^3=\left(\dfrac{3}{4}\right)^6\)

8 tháng 7 2024

a, 3.9.27

= - 3.32.33

= - 31+2+3 

= - 33+3

= - 36

 

 

Bài 3:

a: ĐKXĐ: \(x\ne-1\)

Để A là số nguyên thì \(4⋮x+1\)

=>\(x+1\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(x\in\left\{0;-2;1;-3;3;-5\right\}\)

b: DKXĐ: x<>-1

Để B là số nguyên thì \(x+3⋮x+1\)

=>\(x+1+2⋮x+1\)

=>\(2⋮x+1\)

=>\(x+1\in\left\{1;-1;2;-2\right\}\)

=>\(x\in\left\{0;-2;1;-3\right\}\)

c: ĐKXĐ: x<>2

Để C là số nguyên thì \(x-5⋮x-2\)

=>\(x-2-3⋮x-2\)

=>\(-3⋮x-2\)

=>\(x-2\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{3;1;5;-1\right\}\)

d: ĐKXĐ: x<>-1/2

Để D là số nguyên thì \(4x-3⋮2x+1\)

=>\(4x+2-5⋮2x+1\)

=>\(-5⋮2x+1\)

=>\(2x+1\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{0;-1;2;-3\right\}\)

Bài 4:

a: ĐKXĐ: \(x\ne0\)

Để \(\dfrac{3}{x}>0\) thì x>0

b: ĐKXĐ: \(x\ne0\)

Để \(\dfrac{4}{3x}>0\) thì 3x>0

=>x>0

c: ĐKXĐ: \(x\ne-1\)

Để \(\dfrac{2}{x+1}>0\) thì x+1>0

=>x>-1

d: ĐKXĐ: \(x\ne2\)

Để \(-\dfrac{1}{x-2}\)>0 thì x-2<0

=>x<2

e: ĐKXĐ: \(x\ne-4\)

Để \(\dfrac{x}{x+4}>0\) thì \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x+4>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x+4< 0\end{matrix}\right.\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x>0\\x< -4\end{matrix}\right.\)

 

 

1: \(\dfrac{-2}{3}+\dfrac{3}{4}-\dfrac{-1}{6}+\dfrac{-2}{5}\)

\(=-\dfrac{40}{60}+\dfrac{45}{60}+\dfrac{10}{60}-\dfrac{24}{60}\)

\(=\dfrac{5-14}{60}=-\dfrac{9}{60}=-\dfrac{3}{20}\)

2: \(\dfrac{-2}{3}+\dfrac{-1}{5}+\dfrac{3}{4}-\dfrac{5}{6}-\dfrac{-7}{10}\)

\(=\left(-\dfrac{2}{3}+\dfrac{3}{4}-\dfrac{5}{6}\right)+\left(-\dfrac{1}{5}+\dfrac{7}{10}\right)\)

\(=\left(-\dfrac{8}{12}+\dfrac{9}{12}-\dfrac{10}{12}\right)+\left(-\dfrac{2}{10}+\dfrac{7}{10}\right)\)

\(=\dfrac{-9}{12}+\dfrac{5}{10}=-\dfrac{3}{4}+\dfrac{1}{2}=-\dfrac{3}{4}+\dfrac{2}{4}=-\dfrac{1}{4}\)

3: \(\dfrac{1}{2}-\dfrac{-2}{5}+\dfrac{1}{3}+\dfrac{5}{7}-\dfrac{-1}{6}+\dfrac{-4}{35}+\dfrac{1}{41}\)

\(=\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}\right)+\left(\dfrac{2}{5}+\dfrac{5}{7}-\dfrac{4}{35}\right)+\dfrac{1}{41}\)

\(=\dfrac{3+2+1}{6}+\dfrac{14+25-4}{35}+\dfrac{1}{41}\)

\(=\dfrac{6}{6}+\dfrac{35}{35}+\dfrac{1}{41}=2+\dfrac{1}{41}=\dfrac{83}{41}\)

4: \(\dfrac{1}{100\cdot99}-\dfrac{1}{99\cdot98}-\dfrac{1}{98\cdot97}-...-\dfrac{1}{3\cdot2}-\dfrac{1}{2\cdot1}\)

\(=\dfrac{1}{100\cdot99}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{97\cdot98}+\dfrac{1}{98\cdot99}\right)\)

\(=\dfrac{1}{100\cdot99}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}\right)\)

\(=\dfrac{1}{99}-\dfrac{1}{100}-\dfrac{98}{99}=\dfrac{-97}{99}-\dfrac{1}{100}=\dfrac{-9799}{9900}\)

5: \(\dfrac{\left(\dfrac{3}{10}-\dfrac{4}{15}-\dfrac{7}{20}\right)\cdot\dfrac{5}{19}}{\left(\dfrac{1}{14}+\dfrac{1}{7}-\dfrac{-3}{35}\right)\cdot\dfrac{-4}{3}}=\dfrac{\dfrac{18-16-21}{60}\cdot\dfrac{5}{19}}{\dfrac{5+10+6}{70}\cdot\dfrac{-4}{3}}\)

\(=\dfrac{\dfrac{-19}{60}\cdot\dfrac{5}{19}}{\dfrac{21}{70}\cdot\dfrac{-4}{3}}=\dfrac{-5}{60}:\dfrac{-84}{210}=\dfrac{-1}{12}\cdot\dfrac{-5}{2}=\dfrac{5}{24}\)

6: \(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{\dfrac{3}{5}-\dfrac{3}{25}-\dfrac{3}{125}-\dfrac{3}{625}}{\dfrac{4}{5}-\dfrac{4}{25}-\dfrac{4}{125}-\dfrac{4}{625}}\)

\(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)

\(=\dfrac{1}{4}+\dfrac{3}{4}=\dfrac{4}{4}=1\)

8 tháng 7 2024

\(D=x^2+y^2-x+6y+10\\ =\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\\ =\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\left(y^2+2\cdot y\cdot3+3^2\right)+\dfrac{3}{4}\\ =\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

Ta có: \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{matrix}\right.=>D=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x,y\)

Dấu "=" xảy ra \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

______________________________

\(F=2xy-2x^2-y^2+10x-27\\ =-\left(x^2-2xy+y^2\right)-\left(x^2-10x+25\right)-2\\ =-\left(x-y\right)^2-\left(x-5\right)^2-2\)

Ta có: \(\left\{{}\begin{matrix}\left(x-y\right)^2\le0\forall x,y\\-\left(x-5\right)^2\le0\forall x\end{matrix}\right.=>F=-\left(x-y\right)^2-\left(x-5\right)^2-2\le-2\forall x,y\)

Dấu "=" xảy ra: \(\left\{{}\begin{matrix}x-y=0\\x-5=0\end{matrix}\right.\Leftrightarrow x=y=5\)

\(A=-x^2+x-1\)

\(=-\left(x^2-x+1\right)\)

\(=-\left(x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< =-\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)

=>\(x=\dfrac{1}{2}\)

\(B=6x-x^2-10\)

\(=-\left(x^2-6x+10\right)\)

\(=-\left(x^2-6x+9+1\right)\)

\(=-\left(x-3\right)^2-1< =-1\forall x\)

Dấu '=' xảy ra khi x-3=0

=>x=3

\(C=-x^2+5x+3\)

\(=-\left(x^2-5x-3\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{37}{4}\right)\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{4}< =\dfrac{37}{4}\forall x\)

Dấu '=' xảy ra khi x-5/2=0

=>x=5/2

\(D=x^2-x+y^2+6y+10\)

\(=x^2-x+\dfrac{1}{4}+y^2+6y+9+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

\(F=2xy-2x^2-y^2+10x-27\)

\(=-\left(2x^2+y^2-2xy-10x+27\right)\)

\(=-\left(x^2-2xy+y^2+x^2-10x+25+2\right)\)

\(=-\left(x-y\right)^2-\left(x-5\right)^2-2< =-2\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=x=5\end{matrix}\right.\)

Gọi mẫu số của phân số cần tìm là x

Theo đề, ta có: \(-\dfrac{11}{13}< \dfrac{9}{x}< \dfrac{-11}{15}\)

=>\(\dfrac{11}{13}>\dfrac{-9}{x}>\dfrac{11}{15}\)

=>\(\dfrac{99}{117}>\dfrac{-99}{11x}>\dfrac{99}{135}\)

=>\(\dfrac{99}{117}>\dfrac{99}{-11x}>\dfrac{99}{135}\)

=>\(-11x\in\left\{118;119;...;134\right\}\)

=>\(x\in\left\{-\dfrac{118}{11};-\dfrac{119}{11};...;\dfrac{134}{-11}\right\}\)

mà x nguyên

nên \(x\in\left\{-11;-12\right\}\)

Vậy: Hai phân số cần tìm là \(\dfrac{9}{-11};\dfrac{9}{-12}\)

 

=>

8 tháng 7 2024

\(\dfrac{a}{d}+\dfrac{c}{d}=\dfrac{a}{b}\cdot\dfrac{c}{d}\\ =>\dfrac{a}{b}\cdot\dfrac{c}{d}-\dfrac{c}{d}=\dfrac{a}{b}\\ =>\dfrac{c}{d}\cdot\left(\dfrac{a}{b}-1\right)=\dfrac{a}{b}\\ =>\dfrac{c}{d}\cdot\dfrac{a-b}{b}=\dfrac{a}{b}\\ =>\dfrac{c}{d}=\dfrac{a}{b}:\dfrac{a-b}{b}\\ =>\dfrac{c}{d}=\dfrac{a}{b}\cdot\dfrac{b}{a-b}\\ =>\dfrac{c}{d}=\dfrac{a}{a-b}\)

Vậy: ... 

8 tháng 7 2024

a) Để A là phân số thì \(n-2\ne0\Rightarrow n\ne2\)

b) \(A=-3=>\dfrac{2n-7}{n-2}=-3\)

\(=>2n-7=-3\left(n-2\right)\\ =>2n-7=-3n+6\\ =>2n+3n=6+7\\ =>5n=13\\ =>n=\dfrac{13}{5}\left(ktm\right)\) 

c) \(A=\dfrac{2n-7}{n-2}=\dfrac{2n-4-3}{n-2}=\dfrac{2\left(n-2\right)-3}{n-2}=2-\dfrac{3}{n-2}\)

Để A nguyên thì: 3 ⋮ n - 2

=> n - 2 ∈ Ư(3) ={1; -1; 3; -3}

=> n ∈ {3; 1; 5; -1} 

d) Để A lớn nhất thì \(\dfrac{3}{n-2}\) nhỏ nhất 

=> \(\dfrac{3}{n-2}=-1\)

=>  3 = -(n - 2)

=> 3 = -n + 2

=> n = -1  

e) Để A nhỏ nhất thì \(\dfrac{3}{n-2}\) lớn nhất

=> \(\dfrac{3}{n-2}=1\)

=> 3 = n - 2

=> n = 3 + 2 

=> n = 5

f) Để A là phân số tối giản => ƯCLN(2n - 7; n - 2) = 1

=> ƯCLN(3; n - 2) = 1

=> n - 2 không chia hết cho 3

=> n - 2 ≠ 3k 

=> n ≠ 3k + 2

g) Gọi d là ước nguyên tố của 2n - 7 và n - 2 ta có: 

2n - 7 ⋮ d và n - 2 ⋮ d 

=> 2n - 7 ⋮ d và 2(n - 2) ⋮ d

=> (2n - 4)  - (2n - 7) ⋮ d

=> 3 ⋮ d 

=> d ∈ {1; -1; 3; -3}

Mà d là STN => d = 3 

Với d = 3 => 2n - 7 ⋮ 3 => 2(2n - 7) ⋮ 3 => 4n - 7 ⋮ 3 

=> 3n + n - 7 ⋮ 3 

=> n - 7 ⋮ 3 

=> n - 7 = 3k 

=> n = 3k + 7 

10 tháng 7 2024

bạn cho mình hỏi sao câu d và câu e lại là -1 và 1 thế ạ?

 

Câu 2:

a: Xét ΔBHA vuông tại H và ΔBHM vuông tại H có

BH chung

HA=HM

Do đó: ΔBHA=ΔBHM

b: ΔBHA=ΔBHM

=>BA=BM và \(\widehat{ABH}=\widehat{MBH}\)

Xét ΔBAC và ΔBMC có

BA=BM

\(\widehat{ABC}=\widehat{MBC}\)

BC chung

Do đó: ΔBAC=ΔBMC

=>\(\widehat{ACB}=\widehat{MCB}\)

=>CB là phân giác của góc ACM

c: ΔBAC=ΔBMC

=>\(\widehat{BAC}=\widehat{BMC}\)

=>\(\widehat{BMC}=90^0\)

Ta có: AN//BM

BM\(\perp\)MC

Do đó: AN\(\perp\)CM

Xét ΔCAM có

CH,AN là các đường cao

CH cắt AN tại N

Do đó: N là trực tâm của ΔCAM

=>MN\(\perp\)AC

d: ΔCAB=ΔCMB

=>CA=CM

=>ΔCAM cân tại C

Xét ΔCKA vuông tại K và ΔCIM vuông tại I có

CA=CM

\(\widehat{ACK}\) chung

Do đó: ΔCKA=ΔCIM

=>CI=CK

Xét ΔCAM có \(\dfrac{CI}{CA}=\dfrac{CK}{CM}\)

nên IK//AM