A = 1 x 2 x 3 x 4 x ... x 2019 x 2020 - 1 x 3 x 5 x ... x 2017 x 2019
Chữ số tận cùng của biểu thức A là:
A. 0 B.5 C.3 D.2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{9,6:0,2\text{x}15,4\text{x}2\text{x}15,4:0,25}{30,5:0,5\text{x}7,7:0,125\text{x}5\text{x}6}\)
\(=\dfrac{9,6\text{x}5\text{x}15,4\text{x}2\text{x}15,4\text{x}4}{30,5\text{x}2\text{x}7,7\text{x}8\text{x}5\text{x}6}\)
\(=\dfrac{9,6\text{x}40\text{x}15,4\text{x}15,4}{30,5\text{x}12\text{x}40\text{x}7,7}\)
\(=\dfrac{9,6}{30,5}\text{x}\dfrac{40}{40}\text{x}\dfrac{15.4}{7,7}\text{x}\dfrac{15.4}{12}\)
\(=\dfrac{96}{305}\text{x}\dfrac{77}{60}\text{x}2=\dfrac{1232}{1525}\)
TA THẤY DÃY SỐ TRÊN CÓ 19 SỐ HẠNG
A= (0,1+1,9)x19:2
A=19
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
b: Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Lần thứ nhất bán 85 chiều dài tấm vải nghĩa là bán 85% độ dài tấm vải hả bạn?
Lời giải:
Theo tính chất tổng 3 góc trong 1 tam giác thì:
$\widehat{BIC}=180^0-\widehat{IBC}-\widehat{ICB}$
$=180^0-\frac{\widehat{B}}{2}-\frac{\widehat{C}}{2}$
$=\frac{360^0-(\widehat{B}+\widehat{C})}{2}$
$=\frac{360^0-(180^0-\widehat{A})}{2}=\frac{180^0+\widehat{A}}{2}$
Nếu $\widehat{BIC}=135^0$ thì:
$135^0=\frac{180^0+\widehat{A}}{2}$
$\Rightarrow 180^0+\widehat{A}=135^0.2=270^0$
$\Rightarrow \widehat{A}=270^0-180^0=90^0$
$\Rightarrow \triangle ABC$ vuông tại $A$
Lời giải:
$x:0,125+x:50\text{%}-x-12,5=131,5$
$x\times 8+x\times 2-x-12,5=131,5$
$x\times (8+2-1)=131,5+12,5$
$x\times 9=144$
$x=144:9$
$x=16$
Lời giải:
a.
Vì $MC, MD$ là tiếp tuyến của $(O)$ nên $MC\perp OC, MD\perp OD$
$\Rightarrow \widehat{MCO}=\widehat{MDO}=90^0$
Tứ giác $MCOD$ có tổng 2 góc đối nhau $\widehat{MCO}+\widehat{MDO}=90^0+90^0=180^0$ nên $MCOD$ là tứ giác nội tiếp.
$\Rightarrow M,C,O,D$ cùng thuộc 1 đường tròn (1)
Mặt khác:
$K$ là trung điểm $AB$ nên $OK\perp AB$.
$\Rightarrow \widehat{MKO}=90^0$
Tứ giác $MCKO$ có $\widehat{MCO}=\widehat{MKO}=90^0$ và cùng nhìn cạnh $MO$ nên $MCKO$ là tứ giác nội tiếp.
$\Rightarrow M,C,K,O$ cùng thuộc 1 đường tròn (2)
Từ $(1); (2)\Rightarrow M,C,K,O,D$ cùng thuộc 1 đường tròn.
$\Rightarrow MCKD$ là tứ giác nội tiếp.
b.
Xét tam giác $MCA$ và $MBC$ có:
$\widehat{M}$ chung
$\widehat{MCA}=\widehat{MBC}$ (góc tạo bởi tt và dây cung bằng góc nt chắn cung đó)
$\Rightarrow \triangle MCA\sim \triangle MBC$ (g.g)
$\Rightarrow \frac{MC}{MA}=\frac{MB}{MC}\Rightarrow MC^2=MA.MB(3)$
Mặt khác:
Xét tam giác $MCN$ và $MKC$ có:
$\widehat{M}$ chung
$\widehat{MCN}=\widehat{MCD}=\frac{1}{2}\text{sđc(CD)}=\frac{1}{2}\widehat{COD}=\widehat{COM}=\widehat{MKC}$ (do $MCKO$ là tgnt)
$\Rightarrow \triangle MCN\sim \triangle MKC$ (g.g)
$\Rightarrow \frac{MC}{MK}=\frac{MN}{MC}$
$\Rightarrow MC^2=MK.MN(4)$
Từ $(3); (4)\Rightarrow MA.MB=MK.MN$
Chọn B
Chọn B