Bài 1. Tìm khởi ngữ trong câu sau và viết lại thành câu không có khởi ngữ.
Còn mắt tôi thì các anh lái xe bảo: "Cô có cái nhìn sao mà xa xăm!".
(Lê Minh Khuê, Những ngôi sao xa xôi)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ các cặp tam giác đồng dạng ta có:
\(BE=\frac{AB^2}{BC};CD=\frac{BC^2}{CA};AF=\frac{CA^2}{AB}\)
\(\Rightarrow AF+BE+CD=\frac{AB^2}{BC}+\frac{BC^2}{CA}+\frac{CA^2}{AB}\ge\frac{\left(AB+BC+CA\right)^2}{AB+BC+CA}=C_{ABC}\)
Dấu bằng xảy ra khi \(\frac{AB}{BC}=\frac{BC}{CA}=\frac{CA}{AB}=\frac{AB+BC+CA}{BC+CA+AB}=1\) hay tam giác ABC đều.
jjjjjjjqqqqqqqqaaaaaaaaooooooooooyyyyyyyyyyrrrrrrriggigigigigiiggigigigggigiigigigigigiggigigi
`Answer:`
\(\hept{\begin{cases}6x^2+3xy-9y^2=-40\left(1\right)\\2x+3y=8\left(2\right)\end{cases}}\)
`(1)<=>3(2x^2+xy-3y^2)=-40`
`<=>3(x-y)(2x+3y)=-40`
`<=>3(x+y).8=40` (Theo `(2)`)
`<=>x-y=-5/3(3)`
Từ `(2)(3)=>`\(\hept{\begin{cases}2x+3y=8\\x-y=-\frac{5}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+3y=8\\3x-3y=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}5x=3\\x-y=-\frac{5}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{5}\\y=\frac{3}{1}\end{cases}}\)
Vậy `x+y=3/5+3/1=\frac{43}{15}`
Áp dụng đánh giá \(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\) , ta được:
\(\left(\frac{a}{b+2c}\right)^2+\left(\frac{b}{c+2a}\right)^2+\left(\frac{c}{a+2b}\right)^2\ge\frac{1}{3}\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\)
Vậy ta cần chứng minh:
\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)
Áp dụng bất đẳng thức Bunhiacopxki dạng phân thức ta được:
\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\)
Vậy theo đánh giá ta được: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\), do đó ta được:
\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\)
Vậy bất đẳng thức ban đầu được chứng minh.
ĐK: \(x,y\ne0\).
Đặt \(\frac{1}{x}=a,\frac{1}{y}=b\).
Hệ phương trình trở thành:
\(\hept{\begin{cases}9a+4b=\frac{23}{10}\\3a+b=\frac{7}{10}\end{cases}}\Leftrightarrow\hept{\begin{cases}9a+4b=\frac{23}{10}\\9a+3b=\frac{21}{10}\end{cases}}\Leftrightarrow\hept{\begin{cases}b=\frac{1}{5}\\a=\frac{1}{6}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{6}\\\frac{1}{y}=\frac{1}{5}\end{cases}}\)
Suy ra \(\hept{\begin{cases}x=6\\y=5\end{cases}}\)(thỏa mãn)
\(P=\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\ge\frac{\left(1+1+2\right)^2}{a+b+c}=4\)
Suy ra \(minP=4\).
Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\frac{1}{a}=\frac{1}{b}=\frac{2}{c}\\a+b+c=4\\a,b,c>0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=1\\c=2\end{cases}}\).
Khởi ngữ của câu là “mắt tôi"
Viết lại thành câu không có khởi ngữ: Các anh lái xe nhận xét về mắt tôi: “Cô có cái nhìn sao mà xa xăm”.
Khởi ngữ: Còn mắt tôi
Viết lại câu: Nhìn mắt tôi các anh lái xe bảo: "Cô có cái nhìn sao mà xa xăm!"