Bài 8: Tìm giá trị nhỏ nhất của
A=√𝑥2 −4𝑥+25 ,
C=3+√𝑥 √𝑥+1
B=√𝑥2 −6𝑥+30
D=√𝑥2 −4𝑥+7+√2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(A=\frac{1}{\sqrt{x-1}-\sqrt{x}}+\frac{1}{\sqrt{x-1}+\sqrt{x}}+\frac{\sqrt{x^3}-x}{\sqrt{x}-1}=\frac{\sqrt{x-1}+\sqrt{x}+\sqrt{x-1}-x}{x-1-x}+\frac{x\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=2\sqrt{x-1}+x\)
A B C D H
Xét tg vuông ABH
\(BH=\sqrt{AB^2-AH^2}=\sqrt{18^2-14,4^2}=10,8m\)
Xét tg vuông ABD
\(AB^2=BH.BD\)(Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow BD=\frac{AB^2}{BH}=\frac{18^2}{10,8}=30m\)
Ta có
\(AD=\sqrt{BD^2-AB^2}=\sqrt{30^2-18^2}=24m\)
a/ Ta có \(OM\perp PQ\) (Hai tt cùng xuất phát từ 1 điểm thì đường nối điểm đó với tâm đường tròn vuông góc và chia đôi đường nối 2 tiếp điểm)
Xét tg vuông OIK và tg vuông OMH có \(\widehat{HOM}\) chung => tg OIK đồng dạng tg OMH
\(\Rightarrow\frac{OI}{OM}=\frac{OK}{OH}\Rightarrow OH.OI=OM.OK\)
Xét tg vuông QMO
\(OQ^2=R^2=OK.OM\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow OH.OI=OM.OK=R^2\left(dpcm\right)\)
b/ Ta có
\(OH.OI=R^2\Rightarrow OI=\frac{R^2}{OH}\)
Ta có d cố định, O cố định => OH cố định và không đổi
\(R^2\)không đổi
=> OI không đổi
=> I nằm trên đường thẳng OH cố định và cách O cố định 1 khoảng OI không đổi => I cố định
c/ Không hiểu đề bài
Ta có : (O;AB/2) = OB
(O;AB/2) = OA
Lại có : AD + DO = OA
OC + BC = OB
Vì OA = OB = R => AD + DO = OC + BC
mà BD > BC => OD < OC
=> AD > BC
\(A=\sqrt{x^2-4x+25}=\sqrt{\left(x-2\right)^2+21}\)
Ta có : \(\left(x-2\right)^2\ge0\) => \(\left(x-2\right)^2+21\ge21\left(\forall x\right)\) => \(\sqrt{\left(x-2\right)^2+21}\ge\sqrt{21}\left(\forall x\right)\)
Dấu " = " xảy ra \(\Leftrightarrow\) \(\sqrt{\left(x-2\right)^2}=0\)
\(\Leftrightarrow\) \(x-2=0\)
\(\Leftrightarrow\) x = 2
Vậy giá trị nhỏ nhất của A là : \(\sqrt{21}\) khi x = 2
\(B=\sqrt{x^2-6x+30}=\sqrt{\left(x-3\right)^2+21}\)
Vì \(\sqrt{\left(x-3\right)^2}\ge0\left(\forall x\right)\)=> \(\sqrt{\left(x-3\right)^2+21}\ge\sqrt{21}\left(\forall x\right)\)
Dấu " = " xảy ra \(\Leftrightarrow\) \(\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\) \(x-3=0\)
\(\Leftrightarrow\) \(x=3\)
Vậy giá trị nhỏ nhất của B là : \(\sqrt{21}\) khi x = 3
\(D=\sqrt{x^2-4x+7}+\sqrt{2}=\sqrt{\left(x-2\right)^2+3}+\sqrt{2}\)
Vì