2,35 : (y - 15,3) = \(\dfrac{1}{2}\)
y = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Chiều cao lòng bể là:
4,86:2:(1,5+1,2)=4,86:2:2,7=0,9(m)
b: Thể tích của bể là:
\(0,9\cdot1,5\cdot1,2=1,62\left(m^3\right)=1620\left(lít\right)\)
Thể tích nước cần đổ thêm vào là:
1620-1350=270(lít)
a) Chu vi của đáy bể là:
\(\left(1,5+1,2\right)\times2=5,4\left(m\right)\)
Chiều cao của bể là:
\(4,86:5,4=0,9\left(m\right)\)
b) Thể tích của bể là:
\(1,5\times1,2\times0,9=1,62\left(m^3\right)\)
Đổi: \(1,62m^3=1620l\)
Cần đổ thêm số lít nước để bể đầy là:
\(1620-1350=270\left(l\right)\)
ĐS: ...
a: \(F\in SC\subset\left(SAC\right)\)
\(F\in\left(FBD\right)\)
Do đó: \(F\in\left(SAC\right)\cap\left(FBD\right)\)
Gọi O là giao điểm của AC và BD trong mp(ABCD)
=>\(O\in\left(SAC\right)\cap\left(FBD\right)\)
Do đó: \(\left(SAC\right)\cap\left(FBD\right)=FO\)
b: Xét (SAD) và (SBC) có
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
AD//BC
Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC
\(-5^{22}-\left\{-222-\left[-122-\left(100-5^{22}\right)+2024\right]\right\}\)
\(=-5^{22}+222+\left(-122-100+5^{22}+2024\right)\)
\(=-5^{22}+222-222+5^{22}+2024=2024\)
Ngày 17 của tháng đó là ngày chủ nhật vì :
Ta có :
- Có 5 ngày Thứ 7
- Số ngày thứ sáu > số ngày thứ năm
Suy ra : Có 5 ngày thứ 6
Vậy ta có :
Thứ sáu là các ngày 1,8,15,22,29
Thứ bảy là các ngày 2,9,16,23,30
=) Vậy chủ nhật là các ngày 3,10,17,24,31
8)
a) \(A=1-\dfrac{x}{1-\dfrac{x}{x+1}}\left(x\ne-1\right)\)
\(=1-\dfrac{x}{\dfrac{x+1-x}{x+1}}=1-\dfrac{x}{\dfrac{1}{x+1}}=1-x\left(x+1\right)=-x^2-x+1\)
b) \(B=\dfrac{\dfrac{x}{y}+\dfrac{y}{x}}{\dfrac{x-y}{x+y}+\dfrac{x+y}{x-y}}=\dfrac{\dfrac{x^2}{xy}+\dfrac{y^2}{xy}}{\dfrac{\left(x-y\right)^2+\left(x+y\right)^2}{\left(x+y\right)\left(x-y\right)}}\left(x\ne\pm y;x\ne0;y\ne0\right)\)
\(=\dfrac{\dfrac{x^2+y^2}{xy}}{\dfrac{x^2-2xy+y^2+x^2+2xy+y^2}{\left(x+y\right)\left(x-y\right)}}=\dfrac{\dfrac{x^2+y^2}{xy}}{\dfrac{2\left(x^2+y^2\right)}{x^2-y^2}}\)
\(=\dfrac{x^2+y^2}{xy}\cdot\dfrac{x^2-y^2}{2\left(x^2+y^2\right)}=\dfrac{x^2-y^2}{2xy}\)
10:
a: Thời gian dự định là \(\dfrac{60}{x}\left(giờ\right)\)
b: Thời gian đi nửa quãng đường đầu tiên là: \(\dfrac{60}{2}:\left(x+10\right)=\dfrac{30}{x+10}\left(giờ\right)\)
Thời gian đi nửa quãng đường còn lại là:
\(\dfrac{60-30}{x-6}=\dfrac{30}{x-6}\left(giờ\right)\)
c: Ô tô đến B đúng giờ nên ta có: \(\dfrac{30}{x+10}+\dfrac{30}{x-6}=\dfrac{60}{x}\)
=>\(\dfrac{1}{x+10}+\dfrac{1}{x-6}=\dfrac{2}{x}\)
=>\(\dfrac{x-6+x+10}{\left(x+10\right)\left(x-6\right)}=\dfrac{2}{x}\)
=>\(\dfrac{2x+4}{\left(x+10\right)\left(x-6\right)}=\dfrac{2}{x}\)
=>\(\dfrac{x+2}{x^2+4x-60}=\dfrac{1}{x}\)
=>\(x\left(x+2\right)=x^2+4x-60\)
=>\(x^2+2x=x^2+4x-60\)
=>-2x=-60
=>x=30
Vậy: Vận tốc dự định của ô tô là 30km/h
Bài 6:
a: \(A=\dfrac{x-1}{x}-\dfrac{x+1}{x^2-x}+\dfrac{3\left(x-1\right)}{x^2-2x+1}\)
\(=\dfrac{x-1}{x}-\dfrac{x+1}{x\left(x-1\right)}+\dfrac{3}{x-1}\)
\(=\dfrac{\left(x-1\right)\left(x-1\right)-x-1+3x}{\left(x-1\right)\cdot x}\)
\(=\dfrac{x^2-2x+1+2x-1}{x\left(x-1\right)}=\dfrac{x^2}{x\left(x-1\right)}=\dfrac{x}{x-1}\)
b: \(B=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
\(=\dfrac{\left(x+y\right)^2-\left(x-y\right)^2+4y^2}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{4y^2+4xy}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{2y\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{y}{x-y}\)
\(x:\dfrac{1}{2}+x\times4-x=\dfrac{25}{2}\)
\(x\times2+x\times4-x=\dfrac{25}{2}\)
\(x\times\left(2+4-1\right)=\dfrac{25}{2}\)
\(x\times5=\dfrac{25}{2}\)
\(x=\dfrac{25}{2}:5\)
\(x=\dfrac{5}{2}\)
Vậy x = 5/2
X x2+ X x4- X=12,5
X x(2+4-1) =12,5
X x 5 =12,5
X=12,5:5
X = 2,5
a) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{4}{5}\\\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{4}{5}\\\dfrac{2}{x}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}+\dfrac{1}{y}=\dfrac{4}{5}\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{4}{5}-\dfrac{1}{2}\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=1:\dfrac{3}{10}\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{10}{3}\\x=2\end{matrix}\right.\)
vậy: ....
b_ \(\left\{{}\begin{matrix}\dfrac{15}{x}-\dfrac{7}{y}=9\\\dfrac{4}{x}+\dfrac{9}{y}=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{60}{x}-\dfrac{28}{y}=36\\\dfrac{60}{x}+\dfrac{135}{y}=525\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{163}{y}=489\\\dfrac{4}{x}+\dfrac{9}{y}=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\\dfrac{4}{x}+9:\dfrac{1}{3}=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\\dfrac{4}{x}=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)
vậy: ...
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\)
Đặt \(\dfrac{1}{x}=a;\dfrac{1}{y}=b\)
Hệ phương trình sẽ trở thành:
\(\left\{{}\begin{matrix}a+b=\dfrac{4}{5}\\a-b=\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+a-b=\dfrac{4}{5}+\dfrac{1}{5}\\a-b=\dfrac{1}{5}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a=1\\b=a-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{1}{2}-\dfrac{1}{5}=\dfrac{3}{10}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{2}\\\dfrac{1}{y}=\dfrac{3}{10}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{10}{3}\end{matrix}\right.\left(nhận\right)\)
b: ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\)
Đặt \(\dfrac{1}{x}=a;\dfrac{1}{y}=b\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}15a-7b=9\\4a+9b=35\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}60a-28b=36\\60a+135b=525\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}163b=489\\4a+9b=35\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=3\\4a=35-9b=35-9\cdot3=35-27=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{1}{x}=2\\\dfrac{1}{y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)(nhận)
c: ĐKXĐ: \(x\ne\pm y\)
\(\left\{{}\begin{matrix}\dfrac{1}{x+y}+\dfrac{1}{x-y}=\dfrac{5}{8}\\\dfrac{1}{x+y}-\dfrac{1}{x-y}=-\dfrac{3}{8}\end{matrix}\right.\)
Đặt \(\dfrac{1}{x+y}=a;\dfrac{1}{x-y}=b\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=\dfrac{5}{8}\\a-b=-\dfrac{3}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+a-b=\dfrac{5}{8}-\dfrac{3}{8}\\a-b=-\dfrac{3}{8}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a=\dfrac{2}{8}=\dfrac{1}{4}\\b=a+\dfrac{3}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{8}\\b=\dfrac{1}{8}+\dfrac{3}{8}=\dfrac{4}{8}=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{1}{x+y}=\dfrac{1}{8}\\\dfrac{1}{x-y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=8\\x-y=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y+x-y=8+2\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=10\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=5-2=3\end{matrix}\right.\left(nhận\right)\)
d: ĐKXĐ: \(\left\{{}\begin{matrix}y\ne3x\\y\ne\dfrac{2}{3}x\end{matrix}\right.\)
Đặt \(\dfrac{1}{3x+y}=a;\dfrac{1}{2x-3y}=b\)
Hệ phương trình sẽ trở thành:
\(\left\{{}\begin{matrix}5a+4b=-2\\3a-5b=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}15a+12b=-6\\15a-25b=105\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}37b=-111\\5a+4b=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=-3\\5a=-2-4b=-2-4\cdot\left(-3\right)=-2+12=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=-3\\a=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+y=\dfrac{1}{2}\\2x-3y=-\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}9x+3y=\dfrac{3}{2}\\2x-3y=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=\dfrac{3}{2}-\dfrac{1}{3}=\dfrac{7}{6}\\3x+y=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{7}{66}\\y=\dfrac{1}{2}-3x=\dfrac{1}{2}-\dfrac{7}{22}=\dfrac{4}{22}=\dfrac{2}{11}\end{matrix}\right.\left(nhận\right)\)
e: ĐKXĐ: \(\left\{{}\begin{matrix}x\ne y-2\\x\ne-y+1\end{matrix}\right.\)
Đặt \(\dfrac{1}{x-y+2}=a;\dfrac{1}{x+y-1}=b\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}7a-5b=4,5\\3a+2b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}21a-15b=13,5\\21a+14b=28\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-29b=13,5-28=-14,5\\3a+2b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{1}{2}\\3a=4-2b=4-1=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=1\\b=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y+2=1\\x+y-1=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\x+y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=2\\x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3-x=3-1=2\end{matrix}\right.\left(nhận\right)\)
\(2,35:\left(y-15,3\right)=\dfrac{1}{2}\)
\(y-15,3=2,35:\dfrac{1}{2}\)
\(y-15,3=4,7\)
\(y=4,7+15,3\)
\(y=20\)
\(2,35:\left(y-15,3\right)=\dfrac{1}{2}\)
\(y-15,3=2,35:\dfrac{1}{2}\)
\(y-15,3=4,7\)
\(y=4,7+15,3\)
\(y=20\)