K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giả sử m là đường thẳng song song với b và cắt qua a. Vì m song song với b mà b song song với a nên m cũng song song với a ( vô lí )  Vậy m không song song với b tức m cắt b

Ta có \(n^2+6n+20⋮11\Rightarrow\left(n^2+2\cdot3\cdot n+3^2\right)+11⋮11\Rightarrow\left(n+3\right)^2+11⋮11\)

\(\Rightarrow\left(n+3\right)^2⋮11\). Mặt khác \(11\)chính là số nguyên tố . Do đó \(\left(n+3\right)^2\)cũng chia hết cho \(11^2\)

Tức là \(\left(n+3\right)^2⋮121\Rightarrow n^2+6n+9⋮121\)Mà \(11\)khong chia hết cho \(121\)Nên \(n^2+6n+9+11⋮̸121\Rightarrow n^2+6n+20⋮̸121\) 

\(\left(n+3\right)^2⋮11\Rightarrow\left(n+3\right)^2⋮121\).Đó là theo một công thức nhé bạn cho a^2 chia hết cho b mà b là số nguyên tố nên a^2 chia hết cho b^2. Cách chứng minh ở trên mạng bạn lên đấy kiếm nhé 

4 tháng 7 2019

TA THẤY: \(n^2+6n+20=\left(n^2+6n+9\right)+11=\left(n+3\right)^2+11\)

nên \(n^2+6n+20\)không là số chính phương

Mà \(\left(n^2+6n+20\right)⋮11\)

\(\Rightarrow\left(n^2+6n+20\right)\)không chia hết cho \(11^2\)

Vậy \(n^2+6n+20\)không chia hết cho 121    (ĐPCM)

2 tháng 7 2019

Gọi ( O;R ) , ( I ;r ) lần lượt là các đường tròn ngoại tiếp tam giác ABC, DEF 

Tam giác ABC ~ Tam giác DEF ( vì \(\widehat{ABC}=\widehat{DEF};\widehat{BAC}=\widehat{EDF}\)\(\Rightarrow\widehat{ABC}=\widehat{DEF}\)

\(\widehat{ACB},\widehat{DEF}\)nhọn nên \(\widehat{ACB}=\frac{1}{2}\widehat{AOB};\widehat{DEF}=\frac{1}{2}\widehat{DIE}\)( hệ quả góc nội tiếp )

\(\Rightarrow\widehat{AOB}=\widehat{DIE}\)

     \(OA=OB\left(=R\right)\Rightarrow\Delta OAB\)cân tại O

    \(ID=IE\left(=r\right)\Rightarrow\Delta IDE\)cân tại I

Do đó Tam giác OAB ~ Tam giác IDE \(\Rightarrow\frac{OA}{ID}=\frac{AB}{DE}\Rightarrow\frac{R}{r}=\frac{3DE}{DE}\)

                                                           \(\Rightarrow R=3r\) ( đpcm)

5 tháng 7 2019

Gọi ( O; R ), ( I; R ) lần lượt là các đường tròn ngoại tiếp tam giác ABC, DEF

Tam giác ABC ~ Tam giác DEF ( vì \(\widehat{ABC}=\widehat{DEF;}\widehat{BAC}=\widehat{EDF}\)  ) \(\Rightarrow\widehat{ABC}=\widehat{DEF}\)

\(\widehat{ABC}=\widehat{DEF}\)nhọn nên \(\widehat{ACB}=\frac{1}{2}\widehat{AOB};\widehat{DEF}=\frac{1}{2}\widehat{DIE}\)(hệ quả góc nội tiếp )

\(\Rightarrow\widehat{AOB}=\widehat{DIE}\)

\(OA=OA\left(=R\right)\Rightarrow\Delta OAB\)cân tại O

Do đó Tam giác OAB ~ Tam giác IDE\(\Rightarrow\frac{OA}{ID}=\frac{AB}{DE}\Rightarrow\frac{R}{r}=\frac{3DE}{DE}\)

                                                       \(\Rightarrow R=3r\left(đpcm\right)\)

  Rất vui vì giúp đc bạn <3

1 tháng 7 2019

#)Giải :

Gọi số cần tìm là abcd

Ta xét hai trường hợp :

- TH1 : với d = 0 => có 5 cách chọn a => 4 cách chọn b => 3 cách chọn c => Lập được 5 x 4 x 3 = 60 số tất cả

- TH2 : Với d = 2 hoặc 4 => a có 4 cách chọn => b có 4 cách chọn => c có 3 cách chọn và d có 2 cách chọn => Lập được tất cả 4 x 4 x 3 x 2 = 96 số tất cả 

Vậy từ hai trường hợp trên lập được tất cả 60 + 96 = 156 số 

1 tháng 7 2019

Tập A có n phần tử: 

Số tập con có 3 phân tử là: \(C_n^3=\frac{n!}{3!\left(n-3\right)!}=\frac{n\left(n-1\right)\left(n-2\right)}{6}\)

Số tập con 2 phần tử là : \(C_n^2=\frac{n!}{2!\left(n-2\right)!}=\frac{n\left(n-1\right)}{2}\)

Theo bài ra ta có: \(\frac{n\left(n-1\right)\left(n-2\right)}{6}-\frac{n\left(n-1\right)}{2}=14\)<=> \(n^3-6n^2+5n-84=0\Leftrightarrow n=7\)

Vậy tập A có 7 phần tử

1 tháng 7 2019

mk k hiu cong thức cho lắm

1 tháng 7 2019

Với n=1 ta có : \(1^3+3\cdot1^2+5\cdot1=9⋮3\)

Vậy khẳng định đúng với n=1.

Giả sử khẳng định đúng với n=m ta có \(\left(m^3+3m^2+5m\right)⋮3\)

Ta phải chứng minh khẳng định đúng với n=m+1 nghĩa là:

\(\left(\left(m+1\right)^3+3\left(m+1\right)^2+5\left(m+1\right)\right)⋮3\)

\(\Leftrightarrow\left(m^3+6m^2+14m+9\right)⋮3\)

\(\Leftrightarrow\left(\left(m^3+3m^2+5m\right)+\left(3m^2+9m+9\right)\right)⋮3\)

Mà \(\left(m^3+3m^2+5m\right)⋮3\)

\(3m^2+9m+9=3\left(m^2+3m+3\right)⋮3\)

Do đó khẳng định đúng với n=m+1.

Vậy khẳng định đúng \(\forall n\ge1,n\inℕ\)

1 tháng 7 2019

\(\forall n\ge1,n\in N\)

Ta có: \(n^3+3n^2+5n=\left(n^3+3n^2+2n\right)+3n=n\left(n+1\right)\left(n+2\right)+3n\)

Vì n(n+1) (n+2)  tích của 3 số tự nhiên liên tiếp

=> n( n+1) (n+2) chia hết cho 3

và 3n c hia hết cho 3

=> \(n^3+3n^2+5n\) chia hết cho 3