Trong mặt phẳng cho hai đường thẳng a//b.Chứng minh mọi đường thẳng cắt a thì phải cắt b ( chứng minh phản chứng)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(n^2+6n+20⋮11\Rightarrow\left(n^2+2\cdot3\cdot n+3^2\right)+11⋮11\Rightarrow\left(n+3\right)^2+11⋮11\)
\(\Rightarrow\left(n+3\right)^2⋮11\). Mặt khác \(11\)chính là số nguyên tố . Do đó \(\left(n+3\right)^2\)cũng chia hết cho \(11^2\)
Tức là \(\left(n+3\right)^2⋮121\Rightarrow n^2+6n+9⋮121\)Mà \(11\)khong chia hết cho \(121\)Nên \(n^2+6n+9+11⋮̸121\Rightarrow n^2+6n+20⋮̸121\)
. \(\left(n+3\right)^2⋮11\Rightarrow\left(n+3\right)^2⋮121\).Đó là theo một công thức nhé bạn cho a^2 chia hết cho b mà b là số nguyên tố nên a^2 chia hết cho b^2. Cách chứng minh ở trên mạng bạn lên đấy kiếm nhé
TA THẤY: \(n^2+6n+20=\left(n^2+6n+9\right)+11=\left(n+3\right)^2+11\)
nên \(n^2+6n+20\)không là số chính phương
Mà \(\left(n^2+6n+20\right)⋮11\)
\(\Rightarrow\left(n^2+6n+20\right)\)không chia hết cho \(11^2\)
Vậy \(n^2+6n+20\)không chia hết cho 121 (ĐPCM)
Gọi ( O;R ) , ( I ;r ) lần lượt là các đường tròn ngoại tiếp tam giác ABC, DEF
Tam giác ABC ~ Tam giác DEF ( vì \(\widehat{ABC}=\widehat{DEF};\widehat{BAC}=\widehat{EDF}\)) \(\Rightarrow\widehat{ABC}=\widehat{DEF}\)
\(\widehat{ACB},\widehat{DEF}\)nhọn nên \(\widehat{ACB}=\frac{1}{2}\widehat{AOB};\widehat{DEF}=\frac{1}{2}\widehat{DIE}\)( hệ quả góc nội tiếp )
\(\Rightarrow\widehat{AOB}=\widehat{DIE}\)
\(OA=OB\left(=R\right)\Rightarrow\Delta OAB\)cân tại O
\(ID=IE\left(=r\right)\Rightarrow\Delta IDE\)cân tại I
Do đó Tam giác OAB ~ Tam giác IDE \(\Rightarrow\frac{OA}{ID}=\frac{AB}{DE}\Rightarrow\frac{R}{r}=\frac{3DE}{DE}\)
\(\Rightarrow R=3r\) ( đpcm)
Gọi ( O; R ), ( I; R ) lần lượt là các đường tròn ngoại tiếp tam giác ABC, DEF
Tam giác ABC ~ Tam giác DEF ( vì \(\widehat{ABC}=\widehat{DEF;}\widehat{BAC}=\widehat{EDF}\) ) \(\Rightarrow\widehat{ABC}=\widehat{DEF}\)
\(\widehat{ABC}=\widehat{DEF}\)nhọn nên \(\widehat{ACB}=\frac{1}{2}\widehat{AOB};\widehat{DEF}=\frac{1}{2}\widehat{DIE}\)(hệ quả góc nội tiếp )
\(\Rightarrow\widehat{AOB}=\widehat{DIE}\)
\(OA=OA\left(=R\right)\Rightarrow\Delta OAB\)cân tại O
Do đó Tam giác OAB ~ Tam giác IDE\(\Rightarrow\frac{OA}{ID}=\frac{AB}{DE}\Rightarrow\frac{R}{r}=\frac{3DE}{DE}\)
\(\Rightarrow R=3r\left(đpcm\right)\)
Rất vui vì giúp đc bạn <3
#)Giải :
Gọi số cần tìm là abcd
Ta xét hai trường hợp :
- TH1 : với d = 0 => có 5 cách chọn a => 4 cách chọn b => 3 cách chọn c => Lập được 5 x 4 x 3 = 60 số tất cả
- TH2 : Với d = 2 hoặc 4 => a có 4 cách chọn => b có 4 cách chọn => c có 3 cách chọn và d có 2 cách chọn => Lập được tất cả 4 x 4 x 3 x 2 = 96 số tất cả
Vậy từ hai trường hợp trên lập được tất cả 60 + 96 = 156 số
Tập A có n phần tử:
Số tập con có 3 phân tử là: \(C_n^3=\frac{n!}{3!\left(n-3\right)!}=\frac{n\left(n-1\right)\left(n-2\right)}{6}\)
Số tập con 2 phần tử là : \(C_n^2=\frac{n!}{2!\left(n-2\right)!}=\frac{n\left(n-1\right)}{2}\)
Theo bài ra ta có: \(\frac{n\left(n-1\right)\left(n-2\right)}{6}-\frac{n\left(n-1\right)}{2}=14\)<=> \(n^3-6n^2+5n-84=0\Leftrightarrow n=7\)
Vậy tập A có 7 phần tử
Với n=1 ta có : \(1^3+3\cdot1^2+5\cdot1=9⋮3\)
Vậy khẳng định đúng với n=1.
Giả sử khẳng định đúng với n=m ta có \(\left(m^3+3m^2+5m\right)⋮3\)
Ta phải chứng minh khẳng định đúng với n=m+1 nghĩa là:
\(\left(\left(m+1\right)^3+3\left(m+1\right)^2+5\left(m+1\right)\right)⋮3\)
\(\Leftrightarrow\left(m^3+6m^2+14m+9\right)⋮3\)
\(\Leftrightarrow\left(\left(m^3+3m^2+5m\right)+\left(3m^2+9m+9\right)\right)⋮3\)
Mà \(\left(m^3+3m^2+5m\right)⋮3\)
\(3m^2+9m+9=3\left(m^2+3m+3\right)⋮3\)
Do đó khẳng định đúng với n=m+1.
Vậy khẳng định đúng \(\forall n\ge1,n\inℕ\)
\(\forall n\ge1,n\in N\)
Ta có: \(n^3+3n^2+5n=\left(n^3+3n^2+2n\right)+3n=n\left(n+1\right)\left(n+2\right)+3n\)
Vì n(n+1) (n+2) tích của 3 số tự nhiên liên tiếp
=> n( n+1) (n+2) chia hết cho 3
và 3n c hia hết cho 3
=> \(n^3+3n^2+5n\) chia hết cho 3
Giả sử m là đường thẳng song song với b và cắt qua a. Vì m song song với b mà b song song với a nên m cũng song song với a ( vô lí ) Vậy m không song song với b tức m cắt b