K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`#3107.101107`

\(\dfrac{8}{5}-\dfrac{1}{5}\div\left(x+\dfrac{2}{7}\right)=1\\ \Rightarrow\dfrac{1}{5}\div\left(x+\dfrac{2}{7}\right)=\dfrac{8}{5}-1\\ \Rightarrow\dfrac{1}{5}\div\left(x+\dfrac{2}{7}\right)=\dfrac{3}{5}\\ \Rightarrow x+\dfrac{2}{7}=\dfrac{1}{5}\div\dfrac{3}{5}\\ \Rightarrow x+\dfrac{2}{7}=\dfrac{1}{3}\\ \Rightarrow x=\dfrac{1}{3}-\dfrac{2}{7}\\ \Rightarrow x=\dfrac{1}{21}\)

Vậy, \(x=\dfrac{1}{21}.\)

`#3107.101107`

`1.`

Số hạng của tổng B:

`(99 - 1) \div 1 + 1 = 99` (số hạng)

Giá trị của tổng B:

`(99 + 1) \cdot 99 \div 2 = 4950`

14 tháng 6 2024

$55+88=53+90=143$

14 tháng 6 2024

55 + 88 = 143

143 = ... + 90 

 ...   = 143 - 90

... = 53

Vậy 55 + 88 = 53 + 90 = 143 

 

 

 

14 tháng 6 2024

Với $x>0;x\ne1$:

$P=\frac{\sqrt x+1}{\sqrt x-1}+\frac{2\sqrt x+1}{x-\sqrt x}+\frac{1}{\sqrt x}$

$=\frac{\sqrt x\left(\sqrt x+1\right)}{\sqrt x\left(\sqrt x-1\right)}+\frac{2\sqrt x+1}{\sqrt x\left(\sqrt x-1\right)}+\frac{\sqrt x-1}{\sqrt x\left(\sqrt x-1\right)}$

$=\frac{x+\sqrt x+2\sqrt x+1+\sqrt x-1}{\sqrt x\left(\sqrt x-1\right)}$

$=\frac{x+4\sqrt x}{\sqrt x\left(\sqrt x-1\right)}=\frac{\sqrt x\left(\sqrt x+4\right)}{\sqrt x\left(\sqrt x-1\right)}=\frac{\sqrt x+4}{\sqrt x-1}$

$Toru$

14 tháng 6 2024

\(\text{△ABC}\) có: \(AM,BN\) là 2 đường trung tuyến (gt)

Mà \(O\) là giao điểm của \(AM\) và \(BN\) nên:

\(O\) là trọng tâm của \(\text{△ABC}\)

\(\Rightarrow ON=\dfrac{1}{2}OB\) (theo tính chất ba đường trung tuyến trong tam giác)

Thay \(ON=1\) được:

\(OB=2\cdot ON=2\cdot1=2\)

Vậy \(OB=2\)

14 tháng 6 2024

Vì ON = 1 , và O là trọng tâm, thì OB sẽ là 2 lần ON , tức là:

OB = 2 x ON = 2 x 1 = 2

Vậy độ dài của OB là 2.

 
14 tháng 6 2024

Ta có hệ phương trình: a^3 - 3ab^2 = 2,b^3 - 3a^2b = -11
Cộng hai phương trình với nhau ta được:

a^3 - 3ab^2 + b^3 - 3a^2b

= 2 - 11,(a^3 + b^3) - 3ab(a + b)

= -9,(a + b)(a^2 - ab + b^2) - 3ab(a + b)

= -9,(a + b)(a^2 - ab + b^2 - 3ab)

= -9,(a + b)(a^2 - 4ab + b^2) = -9


Ta cần tìm giá trị của a^2 + b^2. Ta có:,(a + b)^2 = a^2 + b^2 + 2ab

Vậy:,a^2 + b^2 = (a + b)^2 - 2ab

Ta có:,a^3 - 3ab^2 = 2,b^3 - 3a^2b = -11
Cộng hai phương trình ta được:

a^3 + b^3 - 3ab(a + b)

= -9,(a + b)(a^2 - ab + b^2) - 3ab(a + b)

= -9,(a + b)(a^2 - ab + b^2 - 3ab)

= -9,(a + b)(a^2 - 4ab + b^2) = -9

Thay a^2 - 4ab + b^2 = -9 vào phương trình (a + b)(a^2 - 4ab + b^2) = -9 ta được:

(a + b)(-9) = -9,a + b = 1
Thay a + b = 1 vào công thức a^2 + b^2 = (a + b)^2 - 2ab

Ta được:,a^2 + b^2 = 1^2 - 2ab,a^2 + b^2 = 1 - 2ab
Vậy để tính a^2 + b^2, chúng ta cần tìm giá trị của ab.
Thay a + b = 1 vào a^3 - 3ab^2 = 2 ta được:

a^3 - 3ab^2 =

2,a^3 - 3a(1 - a)^2

= 2,a^3 - 3a(1 - 2a + a^2)

= 2,a^3 - 3a + 6a^2 - 3a^3

= 2,-2a^3 + 6a^2 - 3a - 2

= 0,2a^3 - 6a^2 + 3a + 2

= 0,2(a^3 - 3a^2 + 3a - 1)

= 0,2(a - 1)^3 = 0
Vậy a = 1 hoặc a = b
Nếu a = 1, ta có:

1 - 3b^2 = 2,-3b^2 = 1,b^2 = -1, không có giá trị thực cho b.
Nếu a = b, ta có:,a^3 - 3a^3 = 2,-2a^3 = 2,a^3 = -1,a = -1
Vậy a = -1, b = -1
Thay a = -1, b = -1 vào a^2 + b^2 = 1 - 2ab ta được:

a^2 + b^2 = 1 - 2(-1)(-1) = 1 - 2 = -1
Vậy kết quả là a^2 + b^2 = -1.

14 tháng 6 2024

Số học 20

Số La Mã: XX 

14 tháng 6 2024

I,II,III,IV,V,VI,VII,VIII,IX,X,XI,XII,XIII,XIV,XV,XVI,XVII,XVII,XVIII,XIX,XX

 

Bài 2:

a: \(\sqrt{\left(2x-1\right)^2}=4\)

=>|2x-1|=4

=>\(\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

b: ĐKXĐ: x>=-1

\(\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)

=>\(2\sqrt{x+1}-3\sqrt{x+1}-8\cdot\dfrac{\sqrt{x+1}}{4}=5\)

=>\(-3\sqrt{x+1}=5\)

=>\(\sqrt{x+1}=-\dfrac{5}{3}\)(vô lý)

=>Phương trình vô nghiệm

Bài 3:

a: \(Q=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{\sqrt{x}+1}-\dfrac{2}{x-1}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{\sqrt{x}+1}-\dfrac{2}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}-1\right)-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x+\sqrt{x}-2\sqrt{x}+2-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

b: Thay x=9 vào Q, ta được:

\(Q=\dfrac{3}{3+1}=\dfrac{3}{4}\)

Bài 4:

\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)

\(=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)

\(=\sqrt{x-1}-1+\sqrt{x-1}+1\left(x>=2\right)\)

\(=2\sqrt{x-1}\)

14 tháng 6 2024

Cứu câu 2,3,4 đề 2 vs ạ

14 tháng 6 2024

Em nên viết  bằng công thức toán học có biểu tượng Σ góc trái màn hình  em nhé. Như vậy mọi người mới hiểu đúng đề được để có thể hỗ trợ tốt nhất cho em. 

14 tháng 6 2024

Vâng em cảm ơn cô đã chỉ ạ

 

14 tháng 6 2024

a=135

b=189

c=252

d=308

14 tháng 6 2024

Ta có: a/b=15/21=5/7; b/c=9/12=3/4

Đặt a/b=5k/7k
      b/c=3k1/4k1

      c/d=9k2/11k2

Điều kiện là k, k1; k2 thuộc N*

Khi đó:

+ b=7k=3k1

Vì b là số tự nhiên suy ra 3k1 chia hết cho 7

Do 3 và 7 là hai số đôi một nguyên tố cùng nhau nên k1 chia hết cho 7

+ c=4k1=9k2

Vì c là số tự nhiên suy ra 4k1 chia hết cho 9

Do 9 và 4 là hai số nguyên tố cùng nhau suy ra k1 chia hết cho 9

Ta thấy: K1 là nhỏ nhất và khác 0

Mà k1 chia hết cho cả 7 và 9 suy ra k1=63

Suy ra b=63x3=189

           a= 189:7x5=135

           c= 63x4=252

           d=252:9x11=308