Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x là số dương hay x>0
\(\Rightarrow\dfrac{a-10}{2020}>0\\ \Rightarrow a-10>0\left(Do2020>0\right)\\ \Rightarrow a>10\)
b) x là số âm hay x<0
\(\Rightarrow\dfrac{a-10}{2020}< 0\\ \Rightarrow a-10< 0\left(Do2020>0\right)\\ \Rightarrow a< 10\)
c) x không là số dương cũng không là số âm hay x=0
\(\Rightarrow\dfrac{a-10}{2020}=0\\ \Rightarrow a-10=0\\ \Rightarrow a=10\)
Đặt: \(\left\{{}\begin{matrix}z=a+bi\\w=c+di\\u=x+yi\end{matrix}\right.\)
\(\left|z-w\right|^2=\left|z\right|^2-2wz+\left|w\right|^2=50-2wz\) \(=50-2ac+2bd-2\left(ad+bc\right)i\) \(\left(1\right)\)
\(8\left|2u-z+w\right|=8\left|2x+2yi-a-bi+c+di\right|=8\sqrt{\left(2x-a+c\right)^2+\left(2y-b+d\right)^2}\)\(=8\sqrt{a^2-2ac-4ax+b^2-2bd-4yb+c^2+4cx+d^2+4dy+4x^2+4y^2}\) \(\left(2\right)\)
\(\left(z-4i\right)\left(\overline{w}-4i\right)=ac-\left(b-4\right)^2+ac\left(d-4\right)i\) biết \(\left\{{}\begin{matrix}ac-\left(b-4\right)^2>0\\ac\left(d-4\right)=0\rightarrow d=4\end{matrix}\right.\)
\(\left(2u+z-w-8i\right)\left(\overline{z-w-2u}\right)=\left(2x+2yi+a+bi-c-di-8i\right)\)\(\left(\overline{a+bi-c-di-2x+2yi}\right)\) \(=a^2-2ac+c^2-4x^2\)\(+(ab+ad-cb-cd-2ya\) \(-2yc+2xb+2xd-4xy)i\) \(+(2ay+ab-ad-8a\) \(-2cy-cb+cd+8c\) \(-4xy-2xb+2xd+16x)i\) \(+2yb-2yd+2y^2+b^2\) \(-bd+2yb-db+d^2+2yd\) \(-8b+8d-16y\) biết phần thực: \(a^2+b^2+c^2+d^2-2ac-2bd-4x^2\)\(+2y^2-8b+8a-16y>0\) và phần ảo: \(2ab-2cb+4cy+4xd\) \(+8xy+8c-8a+16x=0\)
Rút gọn $P$ ta được: \(P=\sqrt{x^2-y^2-4x+5+2i\left(xy-2y\right)}\) \(+\sqrt{2\left(-2x^2+2y^2-6y-2x+4-\left(4xy-2y+3\right)i\right)}\)
\(\rightarrow\) Lú quá đi ngủ!
667-567+4444=?-345+678
???????????????????????????????????????????????????????????????????????đáp số
667 - 567 + 4444 = ? - 345 + 678
100 + 4444 = ? + (678 - 345)
4544 = ? + 333
? = 4544 - 333
? = 4211
Tỉ số phần trăm diện tích trồng rau so với diện tích khu vườn là:
\(\dfrac{15}{40}=\dfrac{3}{8}=\dfrac{3\times125}{8\times125}=\dfrac{375}{1000}=37,5\%\)
Đáp số: 37,5%
Diện tích trồng rau chiếm: \(\dfrac{15}{40}x100=37,5\%\) diện tích khu vườn.
Tam giác AHC có AK = KH và HM = MC => MK là đường trung bình của ΔAHCΔAHC.
=> MK // AC. Ta lại có AC⊥ABAC⊥AB nên
Tam giác ABM có:AH⊥BMAH⊥BM và MK⊥ABMK⊥AB
=> K là trực tâm, suy ra BK⊥AMBK⊥AM.
Tam giác AHC có AK = KH và HM = MC => MK là đường trung bình của ΔAHCΔAHC.
=> MK // AC. Ta lại có AC⊥ABAC⊥AB nên
Tam giác ABM có:AH⊥BMAH⊥BM và MK⊥ABMK⊥AB
=> K là trực tâm, suy ra BK⊥AMBK⊥AM.
Tỉ số phần trăm diện tích trồng rau so với diện tích mảnh đất là:
\(\dfrac{20}{100}=20\%\)
Chọn A.20%
Diện tích trồng rau chiếm số phần trăm diện tích mảnh đất là :
20 : 100 =0,2 = 20%
=> Chọn A
cho đa thức sau
M= 5x\(^2\)-11xy+7y\(^2\)-(x\(^2\)+xy-2y\(^2\))
a, thu gọn M
b, chứng minh M\(\ge\)0
làm sai rồi 5x\(^2\)-x\(^2\)=4x\(^2\) mà ?? HT. Phong (9A5)
a) \(A=\left(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\right)\cdot\dfrac{x-3\sqrt{x}}{x\sqrt{x}+1}\left(x\ne9;x\ne4;x\ge0\right)\)
\(=\left[\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\right]\cdot\dfrac{x-3\sqrt{x}}{x\sqrt{x}+1}\)
\(=\left[\dfrac{2\sqrt{x}-9-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{-x+2\sqrt{x}+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
b) \(x=\sqrt{3+2\sqrt{2}}+\sqrt{11-6\sqrt{2}}+12\)
\(=\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot1+1^2}+\sqrt{3^2-2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}+12\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}+12\)
\(=\sqrt{2}+1+3-\sqrt{2}+12\)
\(=16\)
Thay x=16 vào A ta có:
\(A=\dfrac{\sqrt{16}}{16-\sqrt{16}+1}=\dfrac{4}{16-4+1}=\dfrac{4}{13}\)
c) \(A=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\Rightarrow\dfrac{1}{A}=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)
\(\Rightarrow\dfrac{1}{A}=\dfrac{x}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}=\sqrt{x}+\dfrac{1}{\sqrt{x}}-1\)
Vì \(\sqrt{x};\dfrac{1}{\sqrt{x}}>0\) nên áp dụng bđt cô si ta có:
\(\dfrac{1}{A}\ge2\sqrt{\sqrt{x}\cdot\dfrac{1}{\sqrt{x}}}-1=2-1=1\)
\(\Leftrightarrow A\le1\)
Dấu "=" xảy ra khi: \(\sqrt{x}=\dfrac{1}{\sqrt{x}}\Leftrightarrow x=1\)
Vậy: ...