Giúp hết ạ mình cảm ơn mn nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(16^5:8^3\)
\(=\left(2^4\right)^5:\left(2^3\right)^3\)
\(=2^{4\cdot5}:2^{3\cdot3}\)
\(=2^{20}:2^9\)
\(=2^{20-9}\)
\(=2^{11}\)
\(=2048\)
a, A = { n \(\in N\)| 1 =< n =< 5 }
b, B = { n \(\in\)N| 0 =< n =< 4 }
c, C = { n \(\in N\)| 1 =< n =< 4 }
d, D = { \(n\in N\)| 0 =< n =< 3, 2n+2 }
e, E = { \(n\in\)N| 0 =< n =< 24, 2n+1 }
f, F = { n \(\in\)N| 1 =< n =< 9, 11n }
Bài 2:
a) \(A=\left\{x\in N|1\le x\le5\right\}\)
b) \(B=\left\{x\in N|0\le x\le4\right\}\)
c) \(C=\left\{x\in N|1\le x\le4\right\}\)
d) \(D=\left\{x=2k|k\in N;0\le k\le4\right\}\)
e) \(E=\left\{x=2k+1|k\in N;0\le k\le21\right\}\)
f) \(F=\left\{x=11k|k\in N;1\le k\le9\right\}\)
Bài 4:
\(B=\left[\left(-\dfrac{1}{2}\right):0,07-\dfrac{1}{5}:0,07\right]\left(\dfrac{3}{2}\cdot2,5+1,5\cdot\dfrac{15}{2}\right)\)
\(=\left[\left(-\dfrac{1}{2}\right)\cdot\dfrac{100}{7}-\dfrac{1}{5}\cdot\dfrac{100}{7}\right]\left(\dfrac{3}{2}\cdot\dfrac{5}{2}+\dfrac{3}{2}\cdot\dfrac{15}{2}\right)\)
\(=\dfrac{100}{7}\cdot\left(-\dfrac{1}{2}-\dfrac{1}{5}\right)\cdot\dfrac{3}{2}\left(\dfrac{5}{2}+\dfrac{15}{2}\right)\)
\(=\dfrac{100}{7}\cdot-\dfrac{7}{10}\cdot\dfrac{3}{2}\cdot\dfrac{20}{2}\)
\(=-10\cdot15\)
\(=-150\)
Chọn C
Bài 5:
\(A=\left(\dfrac{20}{21}-1\right):\left(\dfrac{4141}{4242}-1\right):\left(\dfrac{636363}{646464}-1\right)\)
\(=\left(1-\dfrac{1}{21}-1\right):\left(\dfrac{41\cdot101}{42\cdot101}-1\right):\left(\dfrac{63\cdot10101}{64\cdot10101}-1\right)\)
\(=\left(-\dfrac{1}{21}\right):\left(\dfrac{41}{42}-1\right):\left(\dfrac{63}{64}-1\right)\)
\(=\left(-\dfrac{1}{21}\right):\left(1-\dfrac{1}{42}-1\right):\left(1-\dfrac{1}{64}-1\right)\)
\(=\left(-\dfrac{1}{21}\right):\left(-\dfrac{1}{42}\right):\left(-\dfrac{1}{64}\right)\)
\(=\left(-\dfrac{1}{21}\right)\cdot\left(-42\right)\cdot\left(-64\right)\)
\(=\left(-\dfrac{1}{21}\cdot-42\right)\cdot64\)
\(=2\cdot64\)
\(=128\)
Chọn A
\(27^3:3^4\)
\(=\left(3^3\right)^4:3^4\)
\(=3^{3\cdot4}:3^4\)
\(=3^{12}:3^4\)
\(=3^{12-4}\)
\(=3^8\)
\(\dfrac{27^3}{3^4}\)
\(=\dfrac{\left(3^3\right)^3}{3^4}\)
\(=\dfrac{3^{3\cdot3}}{3^4}\)
\(=\dfrac{3^9}{3^4}\)
\(=3^{9-4}\)
\(=3^5\)
`#3107.101107`
`b,`
\(x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\)
Ta thấy: `8 = 7 + 1 = x + 1`
Thay `8 = x + 1` vào, ta có:
\(x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)
\(=x-5=7-5=2.\)
Ta có:
+) \(\dfrac{103}{105}=\dfrac{105}{105}-\dfrac{2}{105}=1-\dfrac{2}{105}=1-\dfrac{6}{315}\)
+) \(\dfrac{205}{208}=\dfrac{208}{208}-\dfrac{3}{208}=1-\dfrac{3}{208}=1-\dfrac{6}{416}\)
Vì \(\dfrac{6}{315}>\dfrac{6}{416}\) nên \(1-\dfrac{6}{315}< 1-\dfrac{6}{416}\) hay \(\dfrac{103}{105}< \dfrac{205}{208}\)
Ta có:
\(\left\{{}\begin{matrix}1-\dfrac{103}{105}=\dfrac{2}{105}\\1-\dfrac{105}{208}=\dfrac{2}{208}\end{matrix}\right.\)
Vì \(105< 208\Rightarrow\dfrac{2}{105}>\dfrac{2}{208}\Rightarrow\dfrac{103}{105}< \dfrac{203}{208}\)
\(\left|2x-3\right|-x=\left|2-x\right|\)
TH1: \(\dfrac{3}{2}\le x\le2\)
\(\Rightarrow\left(2x-3\right)-x=2-x\)
\(\Leftrightarrow x-3=2-x\)
\(\Leftrightarrow2x=5\)
\(\Leftrightarrow x=\dfrac{5}{2}\left(ktm\right)\)
TH2: \(x>2\)
\(\Rightarrow\left(2x-3\right)-x=x-2\)
\(\Leftrightarrow x-3=x-2\)
\(\Leftrightarrow0=1\) (vô lý)
TH3: \(x< \dfrac{3}{2}\)
\(\Rightarrow\left(3-2x\right)-x=2-x\)
\(\Leftrightarrow3-3x=2-x\)
\(\Leftrightarrow3-2=-x+3x\)
\(\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)
Vậy: ....
Ta có: \(2\) là số tự nhiên \(\Rightarrow2^{32}\) là số tự nhiên
\(\Rightarrow2^{32}+1\) là số tự nhiên
Bài 8:
a: Quy luật là số sau bằng số trước cộng thêm 5 đơn vị
b: A={3;5;8;13;18;23;28;33}
Bài 9:
a: Quy luật là số sau bằng số trước cộng thêm 3 đơn vị
b: B={2;5;8;11;14;17;20;23;26;29}
Bài 7:
a: A={6;7;8;9;11}
A={\(x\in\)N|5<x<12}
B={2;3;4;...;11}
B={\(x\in\)N|1<x<12}
b: C={6;7;8;9;11}