Cho tam giác ABC vuông tại A, đường cao AH. Trên nửa mặt phẳng bờ AC chứa điểm B vẽ tia
Cx⊥ AC. Trên tia Cx lấy điểm D sao cho AB=2CD. Gọi M là trung điểm của BH. Chứng minh rằng AM⊥
MD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{125}{376}\)
\(\Leftrightarrow\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{125}{376}\)
\(\Leftrightarrow\dfrac{1}{3}\left(1-\dfrac{1}{x+3}\right)=\dfrac{125}{376}\left(x\ne0;x\ne-3\right)\)
\(\Leftrightarrow\dfrac{x+3-1}{x+3}=\dfrac{3.125}{376}\Leftrightarrow\dfrac{x+2}{x+3}=\dfrac{3.125.}{376}.\dfrac{\left(x+3\right)}{x+3}\)
\(\Leftrightarrow376\left(x+2\right)=3.125.\left(x+3\right)\)
\(\Leftrightarrow376x+752=375x+1125\)
\(\Leftrightarrow376x-375x=1125-752\Leftrightarrow x=373\left(x\in N^{\cdot}\right)\)
a, ( 3 - 0,6) - ( 7 + 3\(\dfrac{1}{4}\) - \(\dfrac{8}{5}\)) - ( 9 - 2\(\dfrac{1}{4}\))
= 2,4 - (7 + 3,25 - 1,6) - (9 - 2,25)
= 2,4 - 7 - 3,25 + 1,6 - 9 + 2,25
= (2,4 + 1,6) - (7+ 9) - ( 3,25 - 2,25)
= 4 - 16 - 1
= - 12 - 1
= -13
b, ( - \(\dfrac{5}{8}\) + \(\dfrac{7}{6}\) - \(\dfrac{0}{8}\)) - (\(\dfrac{5}{6}\) - \(\dfrac{7}{8}\) - 1,4) + ( \(\dfrac{3}{4}\) + \(\dfrac{5}{3}\) + \(\dfrac{12}{5}\))
= - \(\dfrac{5}{8}\) + \(\dfrac{7}{6}\) - \(\dfrac{5}{6}\) + \(\dfrac{7}{8}\) + \(\dfrac{7}{5}\) + \(\dfrac{3}{4}\) + \(\dfrac{5}{3}\) + \(\dfrac{12}{5}\)
= (- \(\dfrac{5}{8}\) + \(\dfrac{7}{8}\)) + (\(\dfrac{7}{6}\) - \(\dfrac{5}{6}\)) + ( \(\dfrac{7}{5}\) + \(\dfrac{12}{5}\)) + \(\dfrac{3}{4}\) + \(\dfrac{5}{3}\)
= \(\dfrac{1}{4}\) + \(\dfrac{1}{3}\) + \(\dfrac{19}{5}\) + \(\dfrac{3}{4}\) + \(\dfrac{5}{3}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + ( \(\dfrac{1}{3}\) + \(\dfrac{5}{3}\)) + \(\dfrac{19}{5}\)
= 1 + 2 + 3,8
= 6,8
Nếu đóng vào 10 bao thì mỗi bao có khối lượng là:
\(180:10=18\left(kg\right)\)
Nếu đóng vào 15 bao thì mỗi bao có khối lượng là:
\(180:15=12\left(kg\right)\)
Khối lượng của mỗi bao giảm đi số ki-lô-gam là:
\(18-12=6\left(kg\right)\)
Đáp số: 6kg
a) \(A=\left\{x\in N|x=3k+1,k\in N,k\le6\right\}\)
b) \(B=\left\{x\in N|x=5k+2,k\in N,1\le k\le6\right\}\)
`3x-15/(5*8)-15/(8*11)-15/(11*14)-...-15/(47*50)=2 1/10`
`3x-(15/(5*8)+15/(8*11)+15/(11*14)+...+15/(47*50))=21/10`
`3x-5(3/(5*8)+3/(8*11)+3/(11*14)+...+3/(47*50))=21/10`
`3x-5(1/5-1/8+1/8-1/11+1/11-1/14+...+1/47-1/50)=21/10`
`3x-5(1/5-1/50)=21/10`
`3x-5*9/50=21/10`
`3x-9/10=21/10`
`3x=21/10+9/10`
`3x=3`
`x=1`
a) \(A=\left\{x\in N|x=2k,k\in N,1\le k\le50\right\}\)
b) \(B=\left\{x\in N|x=6k,k\in N,k\le24\right\}\)
c) \(C=\left\{x\in N|x=k^2,k\in N,1\le k\le20\right\}\)
`@` `\text {Ans}`
`\downarrow`
`1,`
`a)`
`-` Các phần tử thuộc tập hợp A mà k thuộc B:
`2; a; 4; 6; 8`
`=> C =`\(\left\{2;a;4;6;8\right\}\)
`b)`
`-` Các phần tử thuộc B mà k thuộc A:
`3; 7; 9; c`
`=> D =`\(\left\{3;7;9;c\right\}\)
`c)`
Các phần tử vừa thuộc A và B:
`1; b; 10`
`=> E =`\(\left\{1;b;10\right\}\)
`d)`
\(F=\left\{1;2;3;4;6;7;8;9;10;a;b;c\right\}\)
a) \(C=\left\{2;a;4;6;8\right\}\)
b) \(D=\left\{3;7;9;c\right\}\)
c) \(E=\left\{1;2;a;4;b;6;8;10;3;7;9;c\right\}\)
d) \(F=\left\{1;b;10\right\}\)
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.
Ta có: AB \(\perp\) AC (Δ ABC vuông tại A)
mà CD \(\perp\) AC (đề bài)
⇒ CD \(//\) AB
⇒ Góc DCM = Góc AMC ; Góc ACM= Góc CMD (2 cặp góc này ở vị trí so le trong)
mà (Góc DCM) + (Góc ACM) =90o (CD \(\perp\) AC)
⇒ (Góc AMC) + (Góc CMD) =90o
⇒ AM \(\perp\) MD
ai giúp với