K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

1/8 bạn nhé

31 tháng 3 2018

xét các trường hợp ra rồi xem cái nào lớn nhất

4 tháng 4 2018

Đặt x+10=a , ta có:

\(A=\frac{x}{\left(x+10\right)^2}=\frac{a-10}{a^2}=\frac{1}{a}-\frac{10}{a^2}=-10\cdot\left(\frac{1}{a^2}-2\cdot\frac{1}{a}\cdot\frac{1}{20}+\frac{1}{20^2}\right)+\frac{10}{20^2}\)

\(=-10\cdot\left(\frac{1}{a}-\frac{1}{20}\right)^2+\frac{1}{40}\)

Vì \(-10\cdot\left(\frac{1}{a}-\frac{1}{20}\right)^2\le0\forall a\)

\(\Rightarrow A\le\frac{1}{40}\)

=> GTLN của A là 1/40 <=>1/a-1/20=0 <=>a=20 =>x+10=20 =>x=10

31 tháng 3 2018

1/20 với x=2

31 tháng 3 2018

10548 qua

1 tháng 4 2018

gọi x là tổng số trứng (x>0,x thuộc N*)

ngày đàu bán được số trứng là (x-150) + \(\frac{1}{9}\left(x-150\right)\) =\(\frac{400}{3}+\frac{1}{9}x\)=> số trứng còn lại sau ngày thứ nhất bán là  \(x-\frac{400}{3}-\frac{1}{9}x\)=\(\frac{8}{9}x-\frac{400}{3}\)

ngày thứ hai bán được số trứng là\(200+\frac{1}{9}\left(\frac{8}{9}x-\frac{400}{3}-200\right)\)=> số trứng còn lại sau ngày thứ hai bán là \(\frac{8}{9}x-\frac{400}{3}\)\(-\left(200+\frac{1}{9}\left(\frac{8}{9}x-\frac{400}{3}-200\right)\right)\)

tương tự nhé bn sau đó có phương trình x= ngày thứ 1 + 2 + 3 =>x=.... tự tính nha mình lười 

31 tháng 3 2018

* Tìm GTNN : 

Ta có : 

\(D=\frac{4x-3}{x+1}=\frac{4x+4-7}{x+1}=\frac{4x+4}{x+1}-\frac{7}{x+1}=\frac{4\left(x+1\right)}{x+1}-\frac{7}{x+1}=4-\frac{7}{x+1}\)

Để D đạt GTNN thì \(\frac{7}{x+1}\) phải đạt GTLN hay \(x+1>0\) và đạt GTNN 

\(\Rightarrow\)\(x+1=1\)

\(\Rightarrow\)\(x=0\)

Suy ra : 

\(D=\frac{4x-3}{x+1}=\frac{4.0-3}{0+1}=\frac{0-3}{1}=\frac{-3}{1}=-3\)

Vậy \(D_{min}=-3\) khi \(x=0\)

Chúc bạn học tốt ~ 

31 tháng 3 2018

\(* Tìm GTNN :  Ta có :  \(D=\frac{4x-3}{x+1}=\frac{4x+4-7}{x+1}=\frac{4x+4}{x+1}-\frac{7}{x+1}=\frac{4\left(x+1\right)}{x+1}-\frac{7}{x+1}=4-\frac{7}{x+1}\) Để D đạt GTNN thì \(\frac{7}{x+1}\) phải đạt GTLN hay \(x+1>0\) và đạt GTNN  \(\Rightarrow\)\(x+1=1\) \(\Rightarrow\)\(x=0\) Suy ra :  \(D=\frac{4x-3}{x+1}=\frac{4.0-3}{0+1}=\frac{0-3}{1}=\frac{-3}{1}=-3\) Vậy \(D_{min}=-3\) khi \(x=0\) Chúc bạn học tốt ~ \)

31 tháng 3 2018

x + 3x + 4x + 3x + 1 = 0

⇒x + x + 2x + 2x + 2x + 2x + x + 1 = 0

⇒x x + 1 + 2x x + 1 + 2x x + 1 + x + 1 = 0 ⇒ x + 1 x + x + x + x + x + 1 = 0 ⇒ x + 1 x x + 1 + x x + 1 + x + 1 = 0 ⇒ x + 1 x + 1 x + x + 1 = 0 ⇒ x + 1 x + x + 1 = 0 ⇒ x + 1 = 0 vix̀ + x + 1 ≠ 0 ⇒x + 1 = 0 ⇒x = −1 vậy pt có No ......... 3 2x − 3 − 6 x − 3 = 5 4x + 3 − 17 ⇔ 30 10 2x − 3 − 30 5 x − 3 = 30 6 4x + 3 − 30 17.30 ⇔20x − 30 − 5x + 15 = 24x + 18 − 510 ⇔20x − 5x − 24x = 18 − 510 + 30 − 15

⇔− 9x = −477 ⇔x = 53

vậy pt có No........

31 tháng 3 2018

\(x^4+3x^3+4x^2+3x+1=0\)

\(\Rightarrow x^4+x^3+2x^3+2x^2+2x^2+2x+x+1=0\)

\(\Rightarrow x^3\left(x+1\right)+2x^2\left(x+1\right)+2x\left(x+1\right)+\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x^3+x^2+x^2+x+x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left[x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\right]=0\)

\(\Rightarrow\left(x+1\right)\left(x+1\right)\left(x^2+x+1\right)=0\)

\(\Rightarrow\left(x+1\right)^2\left(x^2+x+1\right)=0\)

\(\Rightarrow\left(x+1\right)^2=0\left(vìx^2+x+1\ne0\right)\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

vậy pt có No .........

\(\frac{2x-3}{3}-\frac{x-3}{6}=\frac{4x+3}{5}-17\)

\(\Leftrightarrow\frac{10\left(2x-3\right)}{30}-\frac{5\left(x-3\right)}{30}=\frac{6\left(4x+3\right)}{30}-\frac{17.30}{30}\)

\(\Leftrightarrow20x-30-5x+15=24x+18-510\)

\(\Leftrightarrow20x-5x-24x=18-510+30-15\)

\(\Leftrightarrow-9x=-477\)

\(\Leftrightarrow x=53\)

vậy pt có No........

2 tháng 4 2018

Áp dụng Bất đẳng thức Bunyakovsky   ta có:

     \(\left(x+y\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)\)

\(\Leftrightarrow\)\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)

\(\Leftrightarrow\)\(\left(x+y\right)^4\le4\left(x^2+y^2\right)^2\)   (2)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=y\)

Áp dụng Bất đẳng thức Bunyakovsky    ta có:

        \(\left(x^2+y^2\right)^2\le\left(1^2+1^2\right)\left(x^4+y^4\right)\)

\(\Leftrightarrow\)\(4\left(x^2+y^2\right)^2\le8\left(x^4+y^4\right)\)    (1)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x^2=y^2\)\(\Leftrightarrow\)\(x=\pm y\)

Từ  (1) và (2) suy ra:    \(\left(x+y\right)^4\le8\left(x^4+y^4\right)\)

                              \(\Leftrightarrow\) \(16\le8\left(x^4+y^4\right)\)

                              \(\Leftrightarrow\)  \(x^4+y^4\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)