tìm giá trị nhỏ nhất của biểu thức
\(D=|x|+|x-2|+3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(~~~~~~~HD~~~~~~~\)
\(Tacó\)
\(\left(2x+\frac{1}{3}\right)^4\ge0\forall x\)
\(\Rightarrow C\ge-1\Rightarrow C_{min}=-1\)
Dấu "=" xảy ra khi:
\(2x+\frac{1}{3}=0\Leftrightarrow2x=-\frac{1}{3}\Leftrightarrow x=-\frac{1}{6}\)
Vậy GTNN của C là: -1 khi: x=-1/6
\(C=\left(2x+\frac{1}{3}\right)^4-1\)
\(\text{Vì }\left(2x+\frac{1}{3}\right)^4\ge0\forall x\)
\(\Rightarrow C=\left(2x+\frac{1}{3}\right)^4-1\ge-1\)
Dấu '' = '' xảy ra khi :
\(\left(2x+\frac{1}{3}\right)^4=0\)
\(\Rightarrow2x+\frac{1}{3}=0\)
\(\Rightarrow2x=-\frac{1}{3}\)
\(\Rightarrow x=-\frac{1}{6}\)
Vậy MinC = -1 <=> x = - 1/6
Có A = x^2 +y^2-xy-x+y+1
=> 2A =2x^2 + 2y^2 -2xy -2x +2y+2 =(x^2 -2xy +y^2)+ (x^2 -2x+1) +(y^2 +2y +1) =(x-y)^2 +(x-1)^2 +(y+1)^2 >=0
=> Min A =0
Còn lại bạn tự giải nka!@
\(B=\left(x-2\right)^2+\left(y+1\right)^2-2017\ge-2017\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
Vậy...
Kẻ đường cao : BH , AI , CK
Ta có: sinA = BH / c ; sinB = AI / c
=> sinA/sinB = BH / AI (1)
Mà BH = a.sinC ; AI = b.sinC
=> BH/AI = a/b (2)
Từ (1) và (2) suy ra sinA/sinB = a/b => a/sinA = b/sinB
Bạn chỉ việc nói chứng minh tượng tự , ta có:
b/sinB = c/sinC ; c/sinC = a/sinA
Từ đó suy ra a /sinA = b / sinB = c /sinC
Chúc bạn học tốt
Kẻ đường cao : BH , AI , CK
Ta có: sinA = BH / c ; sinB = AI / c
=> sinA/sinB = BH / AI (1)
Mà BH = a.sinC ; AI = b.sinC
=> BH/AI = a/b (2)
Từ (1) và (2) suy ra sinA/sinB = a/b => a/sinA = b/sinB
Bạn chỉ việc nói chứng minh tượng tự , ta có:
b/sinB = c/sinC ; c/sinC = a/sinA
Từ đó suy ra a /sinA = b / sinB = c /sinC
Chúc bạn học tốt
c) Xét \(\Delta AHK\) và \(\Delta ADK\), ta có:
AH = AD (đề đã ra)
\(\widehat{HAK}=\widehat{DAK}\)
AK là cạnh chung
\(\Rightarrow\Delta AHK=\Delta ADK\)
=> AB vuông góc KD
Mà AB vuông góc AD
=> AB // KD
P/s: t k chắc nhá
\(\frac{a-b}{b}=\frac{3}{5}\Leftrightarrow\frac{a-b}{3}=\frac{b}{5}=\frac{a-b+b}{3+5}=\frac{a}{8}\left(\text{tính chất dãy tỉ số bằng nhau}\right)\Leftrightarrow\frac{b}{5}=\frac{a}{8}\Leftrightarrow\frac{a}{b}=\frac{8}{5}\)
Ta có: \(\frac{a-b}{b}=\frac{a}{b}-1=\frac{3}{5}\)
\(\Rightarrow\frac{a}{b}=\frac{3}{5}+1=\frac{8}{5}\)
Vậy \(\frac{a}{b}=\frac{8}{5}\)
Để \(A=\frac{5}{x^2-3}\)có giá trị nguyên thì \(5⋮x^2-3\)hay \(x^2-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)mà \(x^2-3\ge-3\)suy ra \(x^2-3\inƯ\left(5\right)=\left\{\pm1;5\right\}\)
Ta có bảng:
\(x^2-3\) | 1 | -1 | 5 |
\(x^2\) | 4 | 2 | 8 |
\(x\) | \(\pm2\) | \(\pm\sqrt{2}\) | \(\pm\sqrt{8}\) |
KL | T/m | L | L |
Vậy đáp số của bài toán: \(x\in\left\{\pm2\right\}\)
\(D=\left|x\right|+\left|x-2\right|+3\)
\(D=\left|x\right|+\left|2-x\right|+3\)
\(D\ge\left|x+2-x\right|+3=\left|2\right|+3=2+3=5\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge0\\2-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le2\end{cases}}\Leftrightarrow0\le x\le2}\)
Vậy Dmin = 5 <=> x thuộc { 0; 1; 2 }
\(~~~~~HD~~~~~\)
\(Taco:\)
\(D=|x|+|x-2|+3\ge|x+2-x|+3=2+3=5\)
Dấu "=" xảy ra <=> 0<x<2
Vậy GTNN của D là: 5 <=> 0<x<2