Gía trị nhỏ nhất của biểu thức
A=\(-2+3\sqrt{x+1}\)
Tính nhanh giúp mình nha
Mính đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( x-1) x + 2 = (x-1) x + 6
\(\Leftrightarrow\left(x-1\right)^x+2-\left(x-1\right)^x-6=0\)
\(\Leftrightarrow-4=0\) ( vô lý )
Vậy phương trình vô nghiệm
b) (x+20)100 + |y+4| = 0
Vì \(\left(x+2\right)^{100}\ge0\forall x;\left|y+4\right|\ge0\forall y\)
\(\Rightarrow\hept{\begin{cases}\left(x+20\right)^{100}=0\\\left|y+4\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+20=0\\y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-20\\y=-4\end{cases}}\)
Vậy x= -20; y= -4
Nhân theo vế 3 đẳng thức:
\(\left(xyz\right)^2=324=18^2=\left(-18\right)^2\)
+) Xét xyz = 18
Ta có: \(z=\frac{18}{xy}=\frac{18}{2}=9\)
\(y=\frac{18}{xz}=\frac{18}{54}=\frac{1}{3}\)
\(x=\frac{18}{yz}=\frac{18}{3}=6\)
+) Xét xyz = -18
\(z=-\frac{18}{xy}=-\frac{18}{2}=-9\)
\(y=-\frac{18}{xz}=-\frac{18}{54}=-\frac{1}{3}\)
\(x=-\frac{18}{yz}=-\frac{18}{3}=-6\)
Vậy ...
a) Xét tam giác BKC và tam giác CHB
+ BC chung
+ BK = HC vì AB = AC ; AK = AH => AB-AK=AC-AH
+ góc ABC = góc HCB (tam giác ABC cân)
Vậy tam giác BKC = tam giác CHB (c.g.c)
Và góc BKC = góc CHB
\(\widehat{KOB}=\widehat{HOC}\)(đối đỉnh)
\(\widehat{BKO}=\widehat{CHO}\left(cmt\right)\)
\(\Rightarrow\widehat{KBO}=\widehat{HCO}\)(3 góc trong tam giác)
Xét \(\Delta OKB\)và \(\Delta OHC\)
+ BK = HC
+ \(\widehat{KBO}=\widehat{OCH}\)
+ \(\widehat{OKB}=\widehat{OHC}\)
Vậy \(\Delta OKB=\Delta OHC\left(g.c.g\right)\)
VÀ OH = OK (hai cạnh tương ứng ) => Tam giác OKH cân tại O
OB = OC (hai cạnh tương ứng) => Tam giác OBC cân tại O
c) Xét \(\Delta AKO\)và \(\Delta AHO\)
+ AO chung
+ OK = OH
+ AH = AK
\(\Rightarrow\Delta AKO=\Delta AHO\left(c.c.c\right)\)
=> Góc KAO = góc HAO
Gọi giao điểm của KH và AO là F
Xét tam giác AFK và tam giác AFH
+ AK = AH
+ ÀF chung
+góc KAF = góc HAF (cmt)
Vậy tam giác AFK = tam giác AFH (c.g.c)
Và KF = FH(hai cạnh tương ứng)
Hay AO đi qua trung điểm của HK
2Q = 1-1/3-1/2+1/4+1/3-1/5-1/4+1/6-........+1/97-1/99-1/98+1/100 = 1-1/2-1/99+1/100 = 4949/9900 >> Q = 49499/19800
\(Q=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+...+\frac{1}{97.99}-\frac{1}{98.100}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}+\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+...+\frac{1}{97}-\frac{1}{99}-\frac{1}{98}+\frac{1}{100}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{100}\right)=\frac{1}{2}.\frac{99}{100}=\frac{99}{200}\) (không chắc cho lắm :v)
Hình tự vẽ ( vẽ ở đây hơi khó )
a,Tam giác ABC cân tại A
=> \(\widehat{BAC}=180^o-2\widehat{ACB}^{\left(1\right)}\)
Tam giác IAC cân tại I ( tự chứng minh tam giác IAM = tam giác IMC )
=>\(\widehat{AIC}=180^o-2\widehat{ACB}^{\left(2\right)}\)
Từ (1)(2) => \(\widehat{BAC}=\widehat{AIC}\)
b,\(\widehat{IBA}=\widehat{BAC}+\widehat{ACB}\)(t/c góc ngoài của tam giác)
\(\widehat{KAC}=\widehat{AIC}+\widehat{ACB}\) (t/c góc ngoài của tam giác)
mà \(\widehat{BAC}=\widehat{AIC}\left(cmt\right)\)
\(\Rightarrow\widehat{IBA}=\widehat{KAC}\)
Xét tam giác KAC và tam giác IBA có :
KA = IB (gt)
góc IBA = góc KAC (cmt)
AC = BA(gt)
=> tam giác KAC = tam giác IBA (c.g.c)
=> AI=KC (2 cạnh tương ứng)
mà AI = IC => KC=IC
c,CI = CK (câu b) => tam giác CIK cân tại C
Do đó góc ICK = 90o <=> góc K = góc AIC =45o
<=> góc BAC = 45o ( vì góc AIC = góc BAC (câu a))
Vậy tam giác ABC có AB=AC ,AB>BC và góc BAC = 45o thì góc ICK = 90o
d, Đang nghĩ :(
Làm tiếp câu D
\(S_{\Delta ICK}=S_{\Delta ABC}+S_{\Delta AIB}+S_{\Delta AKC}=S_{\Delta ABC}+2_{\Delta AIB}\) (Vì \(\Delta AIB=\Delta AKC\))
Mà \(S_{\Delta AIC}=3S_{\Delta ABC}\Rightarrow3S_{\Delta ABC}=S_{\Delta ABC}+2S_{\Delta AIB}\Rightarrow S_{\Delta ABC}=S_{\Delta AIB}\)
\(\Rightarrow IB=BC\)( vì chung chiều cao kẻ từ A)
Mà AB cắt IM tại H -> H là trọng tâm của tam giác AIC
-> CH đi qua trung điểm của AI
P/s: Bài này bn nên vẽ hai hình
bạn tham khảo tại link này nhé~
Câu hỏi của họk toán vs đamê
a, XÉT TAM GIÁC ABE = TAM GIÁC ACD ( DO \(\hept{\begin{cases}\widehat{ACD}=\widehat{ABE}\\AC=AB\\\widehat{A}=\widehat{A}\end{cases}}\))
\(\Rightarrow BE=CD\left(dpcm\right)\)
b, VÌ \(\Delta ABE=\Delta ACD\left(cmt\right)\)\(\Rightarrow AD=AE\)
=> TAM GIÁC ADE CÂN TẠI A
NÊN \(\widehat{ADE}=\frac{180-\widehat{A}}{2}\)
MÀ \(\widehat{ABC}=\frac{180-\widehat{A}}{2}\)(DO TAM GIÁC ABC CÂN TẠI A)
\(\Rightarrow\widehat{ADE}=\widehat{ABC}\Rightarrow DE//BC\)(ĐPCM)
c, XÉT \(\Delta BDE=\Delta CED\)(DO \(\hept{\begin{cases}CE=BD\left(AB-AD=AC-AE\right)\\\widehat{DBE}=\widehat{ECD}\\BE=CD\end{cases}}\)
=>BD=CE (1)
CHỨNG MINH TAM GIÁC BDE CÂN TẠI D ĐỂ CÓ BD = DE
THẬT VẬY TA CÓ : \(\widehat{DEB}=\widehat{EBC}\)
LẠI CÓ:\(\widehat{EBC}=\widehat{DEB}\)(DO BE LÀ PHÂN GIÁC)
d, CÂU NÀY DỄ DỄ DÀNG CHỨNG MINH ĐC M LÀ TRỌNG TÂM TAM GIÁC ABC
NÊN AM LÀ PHÂN GIÁC GÓC BAC
OK
Ai nhanh mình chọn!( Bài này chỉ để thử sức các bn, chứ mik biết lm rồi)
Áp dụng bất đăng thức tam giác vào tam giác đã cho ta được:
\(\hept{\begin{cases}a< b+c\\b< a+c\\c< a+b\end{cases}}\)
Ta có:
\(a^2+b^2+c^2=aa+bb+cc\)\(< a\left(c+b\right)+b\left(a+c\right)+c\left(a+b\right)\)
\(=ac+ab+ab+bc+ac+bc\)
\(=2ab+2ac+2bc\)
\(=2\left(ab+ac+bc\right)\) (đpcm)
\(A=-2+3\sqrt{x+1}\)
Vì \(3\sqrt{x+1}\ge0\forall x\Rightarrow A\ge-2\)
Dấu "=" xảy ra khi \(3\sqrt{x+1}=0\Leftrightarrow\sqrt{x+1}=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy MinA = -2 <=> x = -1