K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2019

\(A=-2+3\sqrt{x+1}\)

Vì \(3\sqrt{x+1}\ge0\forall x\Rightarrow A\ge-2\)

Dấu "=" xảy ra khi \(3\sqrt{x+1}=0\Leftrightarrow\sqrt{x+1}=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy MinA = -2 <=> x = -1

14 tháng 1 2019

a) ( x-1) x + 2 = (x-1) x + 6

\(\Leftrightarrow\left(x-1\right)^x+2-\left(x-1\right)^x-6=0\)

\(\Leftrightarrow-4=0\) ( vô lý ) 

Vậy phương trình vô nghiệm 

b) (x+20)100 + |y+4| = 0  

Vì \(\left(x+2\right)^{100}\ge0\forall x;\left|y+4\right|\ge0\forall y\)

\(\Rightarrow\hept{\begin{cases}\left(x+20\right)^{100}=0\\\left|y+4\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+20=0\\y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-20\\y=-4\end{cases}}\)

Vậy x= -20; y= -4

14 tháng 1 2019

Nhân theo vế 3 đẳng thức:

\(\left(xyz\right)^2=324=18^2=\left(-18\right)^2\)

+) Xét xyz  = 18

Ta có: \(z=\frac{18}{xy}=\frac{18}{2}=9\)

\(y=\frac{18}{xz}=\frac{18}{54}=\frac{1}{3}\)

\(x=\frac{18}{yz}=\frac{18}{3}=6\)

+) Xét  xyz = -18

\(z=-\frac{18}{xy}=-\frac{18}{2}=-9\)

\(y=-\frac{18}{xz}=-\frac{18}{54}=-\frac{1}{3}\)

\(x=-\frac{18}{yz}=-\frac{18}{3}=-6\)

Vậy ...

14 tháng 1 2019

a) Xét tam giác BKC và tam giác CHB

+ BC chung 

+ BK = HC vì AB = AC ; AK = AH => AB-AK=AC-AH

+ góc ABC = góc HCB  (tam giác ABC cân)

Vậy tam giác BKC = tam giác CHB (c.g.c)

Và góc BKC = góc CHB

\(\widehat{KOB}=\widehat{HOC}\)(đối đỉnh)

\(\widehat{BKO}=\widehat{CHO}\left(cmt\right)\)

\(\Rightarrow\widehat{KBO}=\widehat{HCO}\)(3 góc trong tam giác)

Xét \(\Delta OKB\)và \(\Delta OHC\)

+ BK = HC

\(\widehat{KBO}=\widehat{OCH}\)

\(\widehat{OKB}=\widehat{OHC}\)

Vậy \(\Delta OKB=\Delta OHC\left(g.c.g\right)\)

VÀ OH = OK (hai cạnh tương ứng ) => Tam giác OKH cân tại O

OB = OC (hai cạnh tương ứng) => Tam giác OBC cân tại O 

c) Xét \(\Delta AKO\)và \(\Delta AHO\)

+ AO chung

+ OK = OH

+ AH = AK

\(\Rightarrow\Delta AKO=\Delta AHO\left(c.c.c\right)\)

=> Góc KAO = góc HAO

Gọi giao điểm của KH và AO là F

Xét tam giác AFK và tam giác AFH

+ AK = AH

+ ÀF chung

+góc KAF = góc HAF (cmt)

Vậy tam giác AFK = tam giác AFH (c.g.c)

Và KF = FH(hai cạnh tương ứng)

Hay AO đi qua trung điểm của HK

14 tháng 1 2019

2Q = 1-1/3-1/2+1/4+1/3-1/5-1/4+1/6-........+1/97-1/99-1/98+1/100 = 1-1/2-1/99+1/100 = 4949/9900 >> Q = 49499/19800 

14 tháng 1 2019

\(Q=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+...+\frac{1}{97.99}-\frac{1}{98.100}\)

\(=\frac{1}{2}\left(1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}+\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+...+\frac{1}{97}-\frac{1}{99}-\frac{1}{98}+\frac{1}{100}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{100}\right)=\frac{1}{2}.\frac{99}{100}=\frac{99}{200}\) (không chắc cho lắm :v)

14 tháng 1 2019

Hình tự vẽ ( vẽ ở đây hơi khó )

a,Tam giác ABC cân tại A 

=> \(\widehat{BAC}=180^o-2\widehat{ACB}^{\left(1\right)}\)

Tam giác IAC cân tại I ( tự chứng minh tam giác IAM = tam giác IMC )

=>\(\widehat{AIC}=180^o-2\widehat{ACB}^{\left(2\right)}\)

Từ (1)(2) => \(\widehat{BAC}=\widehat{AIC}\)

b,\(\widehat{IBA}=\widehat{BAC}+\widehat{ACB}\)(t/c góc ngoài của tam giác)

\(\widehat{KAC}=\widehat{AIC}+\widehat{ACB}\) (t/c góc ngoài của tam giác)

mà \(\widehat{BAC}=\widehat{AIC}\left(cmt\right)\)

\(\Rightarrow\widehat{IBA}=\widehat{KAC}\)

Xét tam giác KAC và tam giác IBA có :

KA = IB (gt)

góc IBA = góc KAC (cmt)

AC = BA(gt)

=> tam giác KAC = tam giác IBA (c.g.c)

=> AI=KC (2 cạnh tương ứng)

mà AI = IC => KC=IC 

c,CI = CK (câu b) => tam giác CIK cân tại C

Do đó góc ICK = 90<=> góc K = góc AIC =45o

<=> góc BAC = 45( vì góc AIC = góc BAC (câu a))

Vậy tam giác ABC có AB=AC ,AB>BC và góc BAC = 45o thì góc ICK = 90o 

d, Đang nghĩ :(

14 tháng 1 2019

Làm tiếp câu D 

\(S_{\Delta ICK}=S_{\Delta ABC}+S_{\Delta AIB}+S_{\Delta AKC}=S_{\Delta ABC}+2_{\Delta AIB}\)  (Vì \(\Delta AIB=\Delta AKC\))

Mà \(S_{\Delta AIC}=3S_{\Delta ABC}\Rightarrow3S_{\Delta ABC}=S_{\Delta ABC}+2S_{\Delta AIB}\Rightarrow S_{\Delta ABC}=S_{\Delta AIB}\)

\(\Rightarrow IB=BC\)( vì chung chiều cao kẻ từ A)

Mà AB cắt IM tại H -> H là trọng tâm của tam giác AIC

-> CH đi qua trung điểm của AI

P/s: Bài này bn nên vẽ hai hình 

14 tháng 1 2019

bạn tham khảo tại link này nhé~

Câu hỏi của họk toán vs đamê 

14 tháng 1 2019

Hiếu, ai cho chép mạng ?

14 tháng 1 2019

a, XÉT TAM GIÁC ABE = TAM GIÁC ACD ( DO \(\hept{\begin{cases}\widehat{ACD}=\widehat{ABE}\\AC=AB\\\widehat{A}=\widehat{A}\end{cases}}\))

\(\Rightarrow BE=CD\left(dpcm\right)\)

b, VÌ \(\Delta ABE=\Delta ACD\left(cmt\right)\)\(\Rightarrow AD=AE\)

=> TAM GIÁC ADE CÂN TẠI A

NÊN \(\widehat{ADE}=\frac{180-\widehat{A}}{2}\)

MÀ \(\widehat{ABC}=\frac{180-\widehat{A}}{2}\)(DO TAM GIÁC ABC CÂN TẠI A)

\(\Rightarrow\widehat{ADE}=\widehat{ABC}\Rightarrow DE//BC\)(ĐPCM)

c, XÉT \(\Delta BDE=\Delta CED\)(DO \(\hept{\begin{cases}CE=BD\left(AB-AD=AC-AE\right)\\\widehat{DBE}=\widehat{ECD}\\BE=CD\end{cases}}\)

=>BD=CE (1)

CHỨNG MINH TAM GIÁC BDE CÂN TẠI D ĐỂ CÓ BD = DE

THẬT VẬY TA CÓ : \(\widehat{DEB}=\widehat{EBC}\)

LẠI CÓ:\(\widehat{EBC}=\widehat{DEB}\)(DO BE LÀ PHÂN GIÁC)

d, CÂU NÀY DỄ DỄ DÀNG CHỨNG MINH ĐC M LÀ TRỌNG TÂM TAM GIÁC ABC 

NÊN AM LÀ PHÂN GIÁC GÓC BAC

OK

14 tháng 1 2019

Ai nhanh mình chọn!( Bài này chỉ để thử sức các bn, chứ mik biết lm rồi)

15 tháng 1 2019

Áp dụng bất đăng thức tam giác vào tam giác đã cho ta được:

\(\hept{\begin{cases}a< b+c\\b< a+c\\c< a+b\end{cases}}\)

Ta có:

\(a^2+b^2+c^2=aa+bb+cc\)\(< a\left(c+b\right)+b\left(a+c\right)+c\left(a+b\right)\)

                                                                    \(=ac+ab+ab+bc+ac+bc\)

                                                                      \(=2ab+2ac+2bc\)

                                                                    \(=2\left(ab+ac+bc\right)\)                                                   (đpcm)