K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2018

P= \(\frac{x^2}{x-1}\)

để P nhỏ nhất thì \(\frac{1}{P}\)nhỏ nhất

\(\frac{1}{P}=\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}+2\cdot\frac{1}{2}\cdot\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}\)

\(\Leftrightarrow\frac{1}{P}\ge\frac{1}{4}\Leftrightarrow P\le4\)

Vậy minP=4 khi x=2

14 tháng 4 2018

a)   ĐKXĐ:   \(x\ne\pm2\)

\(A=\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2+2x-2x+4}{x^2-4}\)\(=\frac{x^2+4}{x^2-4}\)

b)   \(A>0\) \(\Rightarrow\)\(\frac{x^2+4}{x^2-4}>0\) 

Mà    \(x^2+4>0\)  \(\Rightarrow\)\(x^2-4>0\)

\(\Rightarrow\)\(x^2>4\)

Nếu   x   dương  thì      \(x>\sqrt{4}=2\)

Nếu   x  âm  thì   \(x< \sqrt{4}=2\)

đề triệu sơn

16 tháng 4 2018

Hiện câu 1 mih chưa giải đc

Đây là đ.a câu 2

\(\frac{4c}{4c+57}\ge\frac{1}{a+1}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(a+1\right)\left(35+2b\right)}}\)(Cosi) (1)

Từ đề bài \(\Leftrightarrow\frac{1}{a+1}+\frac{35}{35+2b}\le1-\frac{57}{4c+57}\Leftrightarrow\frac{1}{a+1}+\frac{35}{35+2b}+\frac{57}{4c+57}\le1\) (*)

Từ (*) \(\Rightarrow1-\frac{1}{a+1}=\frac{a}{a+1}\ge\frac{35}{35+2b}+\frac{57}{4c+57}\ge2\sqrt{\frac{35.57}{\left(35+2b\right)\left(4c+57\right)}}\)(2)

Từ (*) \(\Rightarrow1-\frac{35}{35+2b}=\frac{2b}{35+2b}\ge\frac{1}{a+1}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(a+1\right)\left(35+2b\right)}}\)(3)

Nhân vế với vế của (1);(2);(3) lại ta được :

\(\frac{4c.a.2b}{\left(4c+57\right)\left(a+1\right)\left(35+2b\right)}\ge8\sqrt{\frac{57.35.35.57}{\left(4c+57\right)^2\left(a+1\right)^2\left(35+2b\right)^2}}\)

\(\Leftrightarrow abc\ge35.57=1995\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{1}{a+1}=\frac{35}{35+2b}=\frac{57}{4c+57}\\abc=1995\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{2b}{35}=\frac{4c}{57}\\abc=1995\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=2\\b=35\\c=\frac{57}{2}\end{cases}}\) Vậy \(MinA=1995\) tại \(a=2;b=35;c=\frac{57}{2}\)

27 tháng 4 2018

a)    \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)\(=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (vì  a+b+c = 1)

\(=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

C/m  BĐT phụ:   \(\frac{x}{y}+\frac{y}{x}\ge2\)   với  x,y dương

             \(\Leftrightarrow\)\(x^2+y^2\ge2xy\)

            \(\Leftrightarrow\) \(x^2-2xy+y^2\ge0\)

            \(\Leftrightarrow\) \(\left(x-y\right)^2\ge0\)  luôn đúng

Dấu "=" xảy ra   \(\Leftrightarrow\)\(x=y\)

Áp dụng BĐT trên ta có:   \(\frac{a}{b}+\frac{b}{a}\ge2;\) \(\frac{a}{c}+\frac{c}{a}\ge2;\) \(\frac{b}{c}+\frac{c}{b}\ge2\)

\(\Rightarrow\)\(VT=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge3+2+2+2=9\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b=c\)

Vậy    \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b=c\)