|5x-|5x-10||=10m2x (m khác 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{2\left(x^2-8x+22\right)-1}{x^2-8x+22}\)=2-\(\frac{1}{x^2-8x+22}\)
ĐỂ A CÓ GTNH THÌ \(\frac{1}{x^2-8x+22}\)LỚN NHẤt thì x2-8x+22 nhỏ nhất
SUY RA X2-8X+22=x2-8x+16+6=(x-4)2+6>=6(do (x-4)2>=0)
GTNN CỦA x2-8x+22 là 6 khi và chỉ khi (x-4)2=0\(\Leftrightarrow\)x=4
vậy GTNN CỦA A=2-\(\frac{1}{6}\)=\(\frac{11}{6}\)TẠI X=4
B=1-\(\frac{4}{x}\)+\(\frac{1}{x^2}\)
Dặt \(\frac{1}{x}\)=t ta có
B=1-4t+t2=t2-4t+4-3=(t-2)2-3>=-3 dấu bằng xảy ra khi và chỉ khi (t-2)2=0\(\Leftrightarrow\)t=2
\(\Leftrightarrow\)\(\frac{1}{x}\)=2
\(\Leftrightarrow\)=\(\frac{1}{2}\)
vậy GTNN là -3 tại x=1/2
2,a, GTNN A=\(\frac{x^2-12x+36-x^2-9}{x^2+9}\)=\(\frac{\left(x-6\right)^2-\left(x^2+9\right)}{x^2+9}\)=\(\frac{\left(x-6\right)^2}{x^2+9}\)-1
do \(\frac{\left(x-6\right)^2}{x^2+9}\)\(\ge\)0 với mọi x \(\Rightarrow\)\(\frac{\left(x-6\right)^2}{x^2+9}\)-1\(\ge\)-1
dấu = xảy ra khi và chỉ khi (x-6)2\(\Leftrightarrow\)x=6
vậy GTNN của A=-1 tại x=6
B,GTNN B=\(\frac{4\left(x^2+2x+1\right)-4x^2-1}{4x^2+1}\)=\(\frac{4\left(x+1\right)^2}{4x^2+1}\)-1
DO \(\frac{4\left(x+1\right)^2}{4x^2+1}\)\(\ge\)0\(\Rightarrow\)\(\frac{4\left(x+1\right)^2}{4x^2+1}\)-1\(\ge\)-1
dấu =xảy ra khi và chỉ khi 4(x+1)2=0
\(\Leftrightarrow\)x=-1
vạy GTNN của B=-1 tại x=-1
C, GTLN C=\(\frac{-\left(x^2-2x+1\right)+x^2+2}{x^2+2}\)=2-\(\frac{\left(x-1\right)^2}{x^2+2}\)
DO \(\frac{\left(x-1\right)^2}{x^2+2}\)\(\ge\)0\(\Rightarrow\) 2- \(\frac{\left(x-1\right)^2}{x^2+2}\)\(\le\)2
dấu = xảy ra khi và chỉ khi (x-1)2=0\(\Leftrightarrow\)x=1
Vậy GTLN của c=2 tại x=1
Xin lỗi, ấn nhầm
Các vùng ở miền bắc thường có khí hậu khác nhau
- Miền Bắc: Do trực tiếp chịu ảnh hưởng của gió đông Bắc ( thhangs 11 - tháng 4 : mùa đông)
Hướng gió : TB xen ĐN
Miền Bắc lại có vùng núi cao nên khi gió vào đầu mùa sẽ bị chắn ngoài rìa, khi thổi vào sẽ đem theo không khí lạnh ngoài biển vào (hơi nước) , gây mưa nhiều ở vùng núi . Hà Nội lai nằm xa biển và nằm ở vị tri trung tâm miền Bắc nên ít bị ảnh hưởng. Đến cuối đông các đợt không khí lạnh đã bi ngưng tụ đầu mùa tao thành nhưng đợt mưa phùn ẩm ướt, xen kẽ là những gay ấm áp vì Hướng gió : TB xen ĐN
Mình không chắc chắn lắm nếu có sai sót xin bạn bỏ qua nhé <--_-->
Có điều kiện là a>0 và b>0 nữa nha
Theo bđt cô si ta có : \(a+b\ge2\sqrt{ab}\) (1)
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\) (2)
Nhân vế theo vế 1 và 2 ta có : \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}\cdot2\sqrt{\frac{1}{ab}}=4\cdot\sqrt{\frac{ab}{ab}}=4\)
Vậy \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\) đpcm
ta có\(\frac{x-2013}{-3}+\frac{x-2012}{-4}=\frac{x-2011}{-5}-\frac{x-1}{-2015}\)
\(\Leftrightarrow\frac{x-2013}{-3}+1+\frac{x-2012}{-4}+1=\frac{x-2011}{-5}+1-\frac{x-1}{-2015}+1\)
\(\Leftrightarrow\frac{x-2013-3}{-3}+\frac{x-2012-4}{-4}=\frac{x-1-2015}{-5}-\frac{x-1-2015}{-2015}\)
\(\Leftrightarrow\frac{x-2016}{-3}+\frac{x-2016}{-4}=\frac{x-2016}{-5}-\frac{x-2016}{-2015}\)
\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{-3}+\frac{1}{-4}-\frac{1}{-5}+\frac{1}{-2015}\right)=0\)
\(\Leftrightarrow x-2016=0\)
\(\Leftrightarrow x=2016\)
Vậy tập nghiệm của phương trình đã cho là là:\(S=\left(2016\right)\)
\(\Leftrightarrow\frac{a^4+b^4}{2}\ge\frac{\left(a+b\right)^4}{4}\)
\(\Leftrightarrow a^4+b^4\ge\frac{\left(a+b\right)^4}{2}\)
\(\Leftrightarrow2\left(a^4+b^4\right)\ge\left(a+b\right)^4\)
\(\Leftrightarrow2\left(a^4+b^4\right)\ge a^4+2a^2b^2+b^4\)
\(\Leftrightarrow a^4+b^4\ge2a^2b^2\)
\(\Leftrightarrow\left(a^2-b^2\right)^2\ge0\)(đúng)
Ta có: \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+2ab+b^2\)
\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
Áp dụng BĐT trên ta có:
\(a^4+b^4=\left(a^2\right)^2+\left(b^2\right)^2\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}=\frac{\left(a+b\right)^4}{8}\)
\(\Leftrightarrow a^4+b^4\ge\frac{\left(a+b\right)^4}{8}\)
\(\Leftrightarrow\frac{a^4+b^4}{2}\ge\frac{\left(a+b\right)^4}{16}\)
\(\Leftrightarrow\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^4\)