Chứng tỏ rằng các phương trình sau vô nghiệm:
a)\((x-1)^2+3x^2=0\)
b)\(x^2+2x+3=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết xoá \(\frac{2x}{a^2-a+1}\)ở 2 vế. Nếu \(\frac{a}{a+1}>0\left(a< -1;a>0\right)\)thì \(x< \frac{a}{4}\). Nếu \(\frac{a}{a+1}< 0\left(-1< a< 0\right)\)thì \(x>\frac{a}{4}\)
\(ĐKXĐ:a\ne-1\)
\(\frac{2x}{a^2-a+1}-\frac{1}{2a+2}< \frac{4x-1}{2a^2-2a+2}+\frac{a-2ax}{1+a^3}\Leftrightarrow\frac{2x}{a^2-a+1}-\frac{1}{2a+2}< \frac{2x}{a^2-a+1}-\frac{1}{2a^2-2a+2}+\frac{a}{1+a^3}-\frac{2ax}{1+a^3}\)\(\Leftrightarrow\frac{1}{2a+2}-\frac{1}{2a^2-2a+2}+\frac{a}{1+a^3}>\frac{2ax}{1+a^3}\Leftrightarrow\frac{a^2-a+1-a-1+2a}{2\left(a^3+1\right)}>\frac{2ax}{1+a^3}\Leftrightarrow\frac{a^2}{2\left(1+a^3\right)}>\frac{4ax}{2\left(1+a^3\right)}\)\(\Leftrightarrow\frac{4ax}{a+1}< \frac{a^2}{a+1}\)
* Nếu \(\frac{a}{a+1}>0\)(tức là a < -1 hoặc a > 0) thì \(x< \frac{a}{4}\)
* Nếu \(\frac{a}{a+1}< 0\)(tức là -1 < a < 0) thì \(x>\frac{a}{4}\)
Ta có :
2x4 + 1 - 2x3 - x2
= 2x3 ( x - 1 ) - ( x - 1 ) ( x + 1 )
= ( x - 1 ) ( 2x3 - x - 1 )
= ( x - 1 ) [ ( x3 - x ) + ( x3 - 1 ) ]
= ( x - 1 ) [ x ( x - 1 ) ( x + 1 ) + ( x - 1 ) ( x2 + x + 1 ) ]
= ( x - 1 )2 ( x2 + x + x2 + x + 1 )
= ( x - 1 )2 ( 2x2 + 2x + 1 )
= ( x - 1 )2 ( x2 + ( x + 1 )2 ) \(\ge\)0
Suy ra đpcm
ta có : \(\left(a-1\right)^2\ge0\forall a\Rightarrow a^2-2a+1\ge0\Rightarrow a^2+1\ge2a\left(1\right)\)
\(\left(b-1\right)^2\ge0\forall b\Rightarrow b^2+1\ge2b\left(2\right)\)
Lấy (1)+(2) ta có : \(a^2+1+b^2+1\ge2a+2b\forall a,b\)
\(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\forall a,b\)
Theo BĐT AM - GM :
\(a^2+1\ge2\sqrt{a^2}=2\left|a\right|=2a\)
\(b^2+1\ge2\sqrt{b^2}=2\left|b\right|\ge2b\)
Khi đó ta có đpcm
Đề năm nào cũng được đúng không? Nếu đúng thì mình tra trên mạng có một số đề như sau:
https://www.slideshare.net/CharliePhan93x/thi-hsg-ton-8-c-p-n (hình như có cả đáp án hay sao ý)
https://vndoc.com/7-bo-de-thi-hoc-sinh-gioi-tinh-toan-lop-8/download
\(a)\) Ta có :
\(\left(x-1\right)^2\ge0\)
\(3x^2\ge0\)
\(\Rightarrow\)\(\left(x-1\right)^2+3x^2\ge0\)
Dấu "=" xảy ra tức là phương trình có nghiệm x khi và chỉ khi \(\hept{\begin{cases}\left(x-1\right)^2=0\\3x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-1=0\\x^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\x=0\end{cases}}}\)
Vậy phương trình có nghiệm \(x=0\) và \(x=1\)
Đề sai nhé
\(b)\) Ta có :
\(x^2+2x+3\)
\(=\)\(\left(x^2+2x+1\right)+2\)
\(=\)\(\left(x+1\right)^2+2\ge2>0\)
Vậy đa thức \(x^2+2x+3\) vô nghiệm
Em mới lớp 7 có gì sai anh thông cảm nhé