Cho \(B=\frac{\sqrt{x+1}}{\sqrt{x-3}}\) . Tìm \(x\in Z\) để B có giá trị là một số nguyên dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=5.|1-4x|-1
Do|1-4x|\(\ge0\Rightarrow5.\left|1-4x\right|\ge0\Rightarrow5.\left|1-4x\right|-1\ge\)-1
=>MinA=-1
Dấu "=" xảy ra khi |1-4x|=0 <=> 1-4x=0 <=> x=\(\frac{1}{4}\)
b, B=|x|+|x|
Do|x|\(\ge0\Rightarrow\left|x\right|+\left|x\right|\ge0\)
=>Min B=0 \(\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\)
c, C=x2+2.|y-2|-1
Do x2\(\ge0;2.\left|y-2\right|\ge0\Rightarrow x^2+2\left|y-2\right|\ge0\)
=>C\(\ge-1\)=> Min C=-1
Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\\left|y-2\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}}\)
BN TỰ KẾT LUẬN NHA
TK MK NHÉ
Ta có:\(|x-2017|\ge0\)
\(|2018-y|\ge0\)
\(|z+2019|\ge0\)(hơi khác so vs đề của bạn nhưng hình như đề bạn sai)
Khi đó:\(|x-2017|+|2018-y|+|z+2019|=0\)Khi\(\hept{\begin{cases}x-2017=0\\2018-y=0\\z+2019=0\end{cases}}\)
Ta sẽ tính đc x = 2017, y = 2018, z = 2019
ĐK: \(x\ge-1;x\ne3\)
\(B^2=\frac{x+1}{x-3}=\frac{x-3+4}{x-3}=1+\frac{4}{x-3}\)
Để \(B^2\) có giá trị nguyên dương thì \(\frac{4}{x-3}\) có giá trị nguyên dương.Tức là x - 3 > 0
Và \(x-3\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Suy ra \(x\in\left\{4;5;7\right\}\).Để B có giá trị nguyên dương thì \(B^2\) là số chính phương.
Với x = 4: \(B^2=1+\frac{4}{x-3}=1+4=5\) (loại)
Với x = 5: \(B^2=1+\frac{4}{x-3}=1+2=3\)(loại)
Với x = 7: \(B^2=1+\frac{4}{x-3}=1+1=2\)(loại)
Vậy không có giá trị nào của x thuộc Z đề B có giá trị nguyên dương.