K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2018

hình bn tự vẽ nhé

\(+\)ta có: \(MB=BC\)nên \(\Delta BMC\)Cân  tại B \(\Rightarrow\) đường phân giác BK cũng là đường cao \(\Delta BMC\) hay \(BK\perp MC\)

Mà \(CA\perp BM\). Do đó I là trọng tâm \(\Delta BMC\)\(\Rightarrow MH\perp BC\)

Xét  tam giác AMC vuông tại A và tam giác HCM vuông tại H có:

            MC lá cạnh chung

            \(\widehat{AMC}=\widehat{HCM}\)(\(\Delta BMC\)cân tại B )

Nên \(\Delta AMC=\Delta HCM\)(CẠNH HUYỀN - GÓC NHỌN)

Suy ra AM = HC   \(\Rightarrow MB-AM=BC-HC\)hay AB = BH

gọi O là giao điểm AH và BI

Xét \(\Delta AOB\)và \(\Delta HOB\)CÓ:      AB = BH  ( chứng minh trên)

                                                            \(\widehat{ABO}=\widehat{OBH}\)( BI là tia phân giác góc ABC )

                                                            BO là cạnh chung

Nên \(\Delta AOB=\Delta HOB\)(c.g.c)        do đó:        \(\widehat{AOB}=\widehat{HOB}\)

Mà  \(\widehat{AOB}+\widehat{HOB}=180^O\)\(\Rightarrow\widehat{AOB}=\widehat{HOB}=90\)HAY \(BI\perp AH\)

Mặt khác:  OA = OH ( \(\Delta AOB=\Delta HOB\)\(\Rightarrow\)BI là tug trực AH (dpcm)

\(+\)Ta có:  \(BI\perp AH\);        \(BI\perp MC\)  \(\Rightarrow\)AH sog sog vs MC (dpcm)

20 tháng 4 2018

a/ \(n=2m+1\)

\(\Rightarrow\left[\left(2m+1\right)^2+8\left(2m+1\right)+15\right]=4\left(m+2\right)\left(m+3\right)⋮8\)

b/ \(\frac{n^2+1}{n+1}=n-1+\frac{2}{n+1}\)

Để nó chia hết thi n + 1 là ước nguyên của 2

\(\Rightarrow\left(n+1\right)=\left(-2;-1;1;2\right)\)

\(\Rightarrow n=\left(-3,-2,0,1\right)\)

19 tháng 4 2018

k đi . Rồi kết

19 tháng 4 2018

kb với mình

20 tháng 4 2018

\(\frac{-56x-19}{60}\)

19 tháng 4 2018

Í tui nói là 2x-1:3 í nhưng mà k viết đc dạng phân số, chia 3 là cái gạch giữa 2x-1 và 3

20 tháng 4 2018

ta có: \(\frac{2x-1}{3}\le7\)\(\Leftrightarrow\frac{2x-1}{3}-7\le0\)

\(\Leftrightarrow\frac{2x-22}{3}\le0\)\(\Rightarrow2x-22\ge0\)\(\Leftrightarrow x\ge11\)

Vậy với \(x\ge11\)thì \(\frac{2x-1}{3}\le7\)

19 tháng 4 2018

ok t.i.c.k mk đi

20 tháng 4 2018

\(A=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)

\(=\frac{a^2}{ab+ac-a^2}+\frac{b^2}{ba+bc-b^2}+\frac{c^2}{ca+cb-c^2}\)

\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)}\)

\(\ge\frac{\left(a+b+c\right)^2}{\frac{2\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=3\)

19 tháng 4 2018

mình đang cần gấp

19 tháng 4 2018

mình đang cần gấp