Cho tam giác ABC vuông tại A.Qua A kẻ đường thẳng d bất kì.Từ B và C kẻ BD vuông góc với d,CE vuông góc với d(D,E thuộc d).Tính độ dài DE theo BD và CE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CM: a) Do t/giác ABC cân tại A => AB = AC và góc B = góc C
Ta có : AD + DB = AB
AE + EC = AC
và AD = AE(gt); AB = AC(cmt)
=> DB = CE
Xet t/giác BDC và t/giác CEB
có DB = CE (cmt)
góc B = góc C (cmt)
BC : chung
=> t/giác BDC = t/giác CEB (c.g.c)
=> BE = DC (hai cạnh tương ứng)
b) Ta có: t/giác BDC = t/giác CEB (cmt)
=> góc BDC = góc BEC (hai góc tương ứng)
=> góc EBC = góc DCB (hai góc tương ứng)
Mà góc ABE + góc EBC = góc B
góc ACD + góc DCB= góc C
và góc B = góc C (cmt)
=> góc EBA = góc DCA
Xét t/giác BMD và t/giác CME
có góc BDM = góc CEM (cmt)
DB = EC (Cmt)
góc DBM = góc MCE(cmt)
=> t/giác BMD = t/giác CME(g.c.g)
c) Ta có: t/giác BMD = t/giác CME (cmt)
=> BM = CM (hai cạnh tương ứng)
Xét t/giác ABM và t/giác ACM
có AB = AC (cmt)
BM = CM (cmt)
AM : chung
=> t/giác ABM = t/giác ACM (c.c.c)
=> góc BAM = góc CAM (hai góc tương ứng)
=> AM là tia p/giác của góc BAC
CM
a) Vì \(\Delta ABC\)cân tại A \(\Rightarrow\hept{\begin{cases}\widehat{ABC}=\widehat{ACB}\left(tinhchat\right)\\AB=AC\left(dinhnghia\right)\end{cases}}\)
Ta có:\(\hept{\begin{cases}AB=AC\\AD=AE\\AD+DB=AB;AE+EC=AC\end{cases}}\)\(\Rightarrow DB=EC\)
Xét \(\Delta BDC\)và \(\Delta CEB\)có:
\(\hept{\begin{cases}DB=EC\left(cmt\right)\\\widehat{ABC}=\widehat{ACB\left(cmt\right)}\\BCchung\end{cases}}\)\(\Rightarrow\)\(\Delta BDC\)=\(\Delta CEB\) (c-g-c)
\(\hept{\begin{cases}BE=CD\left(2canhtuongung\right)\\\widehat{BDC}=\widehat{BEC}\left(2canhtuongung\right)\\\widehat{B1}=\widehat{C1}\left(2goctuongung\right)\end{cases}}\)
b) Xét \(\Delta MBC\)có \(\widehat{B1}=\widehat{C1}\left(cmt\right)\)
\(\Rightarrow\Delta MBC\)cân tại A
\(\Rightarrow MB=MC\left(tinhchat\right)\)
Ta có: \(\hept{\begin{cases}BE=CD\left(cmt\right)\\MB=MC\left(cmt\right)\\DM+MC=DC;ME+MB=EB\end{cases}}\)\(\Rightarrow DM=ME\)
Xét \(\Delta BMD\)và \(\Delta CME\)có:
\(\hept{\begin{cases}\widehat{M1}=\widehat{M2}\left(2gocdoidinh\right)\\MD=ME\left(cmt\right)\\\widehat{BDC}=\widehat{BEC}\left(cmt\right)\end{cases}}\)\(\Rightarrow\Delta BMD=\Delta CME\)( g-c-g)
c) Bạn làm phần a và b trước nhé mình nghĩ phần c rồi nói
Giải :
a)xét t/giác ABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=> \(\widehat{B}=180^0-\widehat{A}-\widehat{C}=180^0-60^0-40^0=80^0\)
Do DE // BC => \(\widehat{B}+\widehat{BED}=180^0\)(trong cùng phía)
=> góc BED = 1800 - góc B = 1800 - 800 = 1000
Xét t/giác BCD có góc DBC + góc C + góc BDC = 1800 (tổng 3 góc của 1 t/giác)
=> góc DBC = 1800 - góc C - góc BDC = 1800 - 1200 - 400 = 200
Do DE // BC => góc CBD = góc BDE (so le trong)
Mà góc DBC = 200 => góc BDE = 200
b) Ta có: góc ABD + góc DBC = 800
=> góc ABD = 800 - góc DBC = 800 - 200 = 600 (1)
Do DF là tia p/giác của góc BDC nên:
góc BDF = góc FDC = góc BDC/2 = 1200/2 = 600 (2)
Mà góc ABD và góc BDF ở vị trí so le trong (3)
từ (1);(2);(3) => DF // AB
c) Xét t/giác EBD và t/giác FDB
có góc EBD = gióc BDF = 600 (cmt)
BD : chung
góc EDB = góc DBF = 200 (cmt)
=> t/giác EBD = t/giác FDB (g.c.g)
=> DF = BE (hai cạnh tương ứng)