K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

toán lớp 9 mà

24 tháng 3 2020

giải theo phương trình lớp 8 ý ạ

25 tháng 4 2018

2x . (3x - 4) - 6x + 8 = 0

<=> 6x2 - 8x - 6x + 8 = 0

<=> 6x- 6x - (8x - 8) = 0

<=> 6x (x - 1) - 8 . (x - 1) = 0

<=> (6x - 8) . (x - 1) = 0

<=> \(\orbr{\begin{cases}6x-8=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{6}=\frac{4}{3}\\x=1\end{cases}}\)

25 tháng 4 2018

Mk se ko giong cac bn ay dau! Ket bn nha!

2 tháng 10 2021

ngu 

đến đi

24 tháng 4 2018

dễ quá mai mình làm cho

giờ ngủ đây

9 tháng 10 2020

\(\Leftrightarrow\frac{x^2}{y+z}-\frac{z^2}{y+z}+\frac{z^2}{x+y}-\frac{y^2}{x+y}+\frac{y^2}{x+z}-\frac{x^2}{x+z}\ge0\)

\(\Leftrightarrow\left(\frac{x^2}{y+z}-\frac{x^2}{x+z}\right)+\left(\frac{y^2}{x+z}-\frac{y^2}{x+y}\right)+\left(\frac{z^2}{x+y}-\frac{z^2}{y+z}\right)\ge0\)

\(\Leftrightarrow x^2\left(\frac{1}{y+z}-\frac{1}{x+z}\right)+y^2\left(\frac{1}{x+z}-\frac{1}{x+y}\right)+z^2\left(\frac{1}{x+y}-\frac{1}{y+z}\right)\ge0\)

\(\Leftrightarrow x^2\left(\frac{x-y}{\left(y+z\right)\left(x+z\right)}\right)+y^2\left(\frac{y-z}{\left(x+z\right)\left(x+y\right)}\right)+z^2\left(\frac{z-x}{\left(x+y\right)\left(y+z\right)}\right)\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)\left(x+y\right)+y^2\left(y-z\right)\left(y+z\right)+z^2\left(z-x\right)\left(z+x\right)\ge0\)

\(\Leftrightarrow x^2\left(x^2-y^2\right)+y^2\left(y^2-z^2\right)+z^2\left(z^2-x^2\right)\ge0\)

\(x^4-x^2y^2+y^4-y^2z^2+z^4-z^2x^2\ge0\)

\(\Leftrightarrow2x^4-2x^2y^2+2y^4-2y^2z^2+2z^4-2z^2x^2\ge0\)

\(\Leftrightarrow\left(x^4-2x^2y^2+y^4\right)+\left(y^4-2y^2z^2+z^4\right)+\left(z^4-2z^2x^2+x^4\right)\ge0\)

\(\Leftrightarrow\left(x^2-y^2\right)^2+\left(y^2-z^2\right)^2+\left(z^2-x^2\right)^2\ge0\)(đúng)

24 tháng 4 2018

A B C H M P Q I K R E F G

Gọi E và F lần lượt là giao điểm của tia BA và CA với PC và PB.

Dựng đỉnh thứ tư của hình chữ nhật BACG.

Do tứ giác BACG là hình chữ nhật nên A;G và trung điểm M của BC thẳng hàng

Mà P;A;M thẳng hàng => P;A;G thẳng hàng.

Dễ thấy FA//BG (Quan hệ song song vuông góc)

Áp dụng ĐL Thales cho \(\Delta\)BGP: \(\frac{PF}{FB}=\frac{PA}{AG}\)(1)

Tương tự ta có: \(\frac{PE}{EC}=\frac{PA}{AG}\)(2)

Từ (1) và (2) => \(\frac{PF}{FB}=\frac{PE}{EC}\)=> EF // BC (ĐL Thales đảo) \(\Rightarrow\frac{EA}{AB}=\frac{FA}{AC}\)(Hệ quả ĐL Thales) (3)

Ta có: \(\frac{FA}{IQ}=\frac{AC}{IH}=\frac{AB}{IB}\)(Hệ quả ĐL Thales) Suy ra: \(\frac{FA}{AC}=\frac{IQ}{IH}\)(4)

Tương tự ta cũng có tỉ lệ: \(\frac{EA}{AB}=\frac{RK}{KH}\)(5)

Từ (3);(4) và (5) => \(\frac{IQ}{IH}=\frac{RK}{KH}\). Áp dụng ĐL Thales đảo cho \(\Delta\)RHQ => IK//QR (đpcm).

24 tháng 4 2018

     \(4x^2+4y^2-12x-12y+20=0\)

\(\Leftrightarrow\)\(4x^2-12x+9+4y^2-12y+9+2=0\)

\(\Leftrightarrow\)\(\left(2x-3\right)^2+\left(2y-3\right)^2+2=0\)

Vì   \(\left(2x-3\right)^2\ge0;\) \(\left(2y-3\right)^2\ge0\)

\(\Rightarrow\)\(\left(2x-3\right)^2+\left(2y-3\right)^2+2\ge2\)

Vậy pt vô nghiệm

24 tháng 4 2018

\(4x^2-12x+9+4y^2-12y+9+2=0\)

mặt khác

\(\left(2x-3\right)^2+ \left(2y-3\right)^2+2=0\)

\(\left(2x-3\right)^2+\left(2y-3\right)^2\ge0\)

\(\Rightarrow\left(2x-3\right)^2+\left(2y-3\right)^2+2>0\)

=> PTVN