K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2019

Bạn tự vẽ hình được không ạ?

a, Góc AEK= góc ABC (đồng vị)

    Góc AKE=góc ACB (đồng vị)

b, Ta có: EK song song BC(gt)

Mặt khác AH vuông góc BC (gt)

-> AH vuông góc EK.

c, Đề sai ạ?

7 tháng 2 2019

Đề ko sai đâu 

Bn giúp mk nhanh Lên mk đang cần gấp

Thank trc nha

7 tháng 2 2019

A B C M I K E N

CM : a) Xét t/giác ABM và t/giác ACN

có AB = AC (gt)

   góc B = góc C ( vì t/giác ABC cân tại A)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

=> AM = AN (hai cạnh tương ứng)

b) Ta có: t/giác ABM = t/giác ACN (cmt)

=> góc BAM = góc CAN (hai góc tương ứng)

Xét t/giác AIM và t/giác AKN

có góc AIM = góc AKN = 900 (gt)

   AM = AN (cmt)

  góc IAM = góc KAN (cmt)

=> t/giác AIM = t/giác AKN ( ch - gn)

=> AI = AK (hai cạnh tương ứng)

c)tự làm

a)Có \(\Delta ABC\)cân \(\Rightarrow AB=AC\)và \(\widehat{B}=\widehat{C}\)

Xét \(\Delta AMB\)và \(\Delta ANC\)

\(AB=AC\left(cmt\right)\)

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

\(MB=MC\left(gt\right)\)

\(\Rightarrow\Delta AMB=\Delta ANC\left(c.g.c\right)\Rightarrow AM=AN\left(dpcm\right)\)

b) Có \(\Delta AMB=\Delta ANC\left(c.g.c\right)\Rightarrow\widehat{BAM}=\widehat{CAN}\)

Xét \(\Delta AIM\)và \(\Delta AKN\)có :

\(\widehat{AIM}=\widehat{AKN}=90^o\)

\(AM=AN\)

\(\widehat{BAM}=\widehat{CAN}\)

\(\Rightarrow\Delta AIM=\Delta AKN\left(ch-gn\right)\Rightarrow AI=AK\left(dpcm\right)\)

c) Xét \(\Delta IAE\)và \(\Delta KAE\)có :

\(AE:chung\)

\(\widehat{AIM}=\widehat{AKN}=90^o\)

\(AI=AK\left(cmt\right)\)

\(\Rightarrow\Delta IAE=\Delta KAE\left(ch-cgv\right)\)

\(\Rightarrow\widehat{IAE}=\widehat{KAE}\)  \(\Rightarrow AE\)là phân giác của \(\widehat{IAK}\)hay \(AE\)là phân giác của\(\widehat{BAC}\)

7 tháng 2 2019

Vì 5(y+z) = 3(x+z)

Suy ra (x+z) / 5 = (y+z) / 3 = (x+z-y-z) / 5-3 = (x-y) / 2

Suy ra (x+z) / 5 = (x-y) / 2 tương đương (x+z) / 10 = (x-y) / 4                               (1)

2(x+y) = 3(x+z)

Suy ra (x+z) / 2 = (x+y) / 3 = (x+z-x-y) / 2-3 = y-z

(x+z) / 2 = y-z

Tương đương (x+z) / 10 = (y-z) / 5                                                                      (2)

Từ (1) và (2) suy ra:

 \frac{(x - y)}{4}=\frac{(y-z)}{5}

7 tháng 2 2019

Cop mạng ghi nguồn đầy đủ vào nhé!

Ta có:  \(2\left(x+y\right)=3\left(z+x\right)\)

\(\Rightarrow\frac{x+y}{3}=\frac{z+x}{2}\)

\(=\frac{x+y-\left(z+x\right)}{3-2}=y-z\)(tính chất dãy tỉ số bằng nhau)

\(\Rightarrow\frac{x+z}{2}=y-z\)

\(\Rightarrow\frac{x+z}{10}=\frac{y-z}{5}\left(1\right)\)

Lại có:\(5\left(y+z\right)=3\left(x+z\right)\)

\(\Rightarrow\frac{y+z}{3}=\frac{x+z}{5}\)

\(=\frac{z+x-\left(y+z\right)}{5-3}=\frac{x-y}{2}\)

\(\Rightarrow\frac{x+z}{5}=\frac{x-y}{2}\)

\(\Rightarrow\frac{x+z}{10}=\frac{x-y}{4}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\left(đpcm\right)\)

7 tháng 2 2019

a,\(AB^2-BH^2=AC^2-CH^2\left(=AH^2\right)\Rightarrow AB^2+CH^2=AC^2+BH^2\)

b, \(\hept{\begin{cases}EF^2=AE^2+AF^2\\BC^2=AB^2+AC^2\\AE< AB,AF< AC\end{cases}}\Rightarrow EF^2< BC^2\Rightarrow EF< BC\)

c, Tính được BC = 10 cm

\(AH.BC=AB.AC\left(=2S_{ABC}\right)\Rightarrow AH.10=6.8\Rightarrow AH=4,8\left(cm\right)\)

Sau đó áp dụnh định lí Pitago vào tam giác AHB và AHC vuông tại H thì tính được:

BH = 3,6 cm và CH = 6,4 cm

7 tháng 2 2019

PHẢI CÓ ĐIỀU KIỆN X BẰNG BAO NHIÊU THÌ MK MS TÍNH ĐC NHÉ BN!

7 tháng 2 2019

l3x+6l - l2x-1l = 5

- Vs x<-2 thì ta đc: -3x-6+2x-1=5 (=) x=-12 (thỏa mãn)

- Vs -2<x<1/2 thì ta đc: 3x+6+2x-1=5 (=) 5x=0 (=) x=0 (thỏa mãn)

- Vs x>1/2 thì ta đc: 3x+6-2x+1=5 (=) x=-2 (không thỏa mãn)

vậy tập nghiệm của phương trình là S={-12;0}

Đề thế này thì tính ra âm à , cạnh góc vuông sao lơn hơn cạnh huyền trời ............

~ xem lại đề nha

~ học tốt!~

29 tháng 4 2020

ngu thế

7 tháng 2 2019

trả lời nhanh giùm mik vs

mk đg cần gấp

a) Có I là trung điểm của BC \(\Rightarrow AI\)là đường trung tuyến của \(\Delta ABC\)mà \(\Delta ABC\)cân \(\Rightarrow AI\)vừa là đường trung tuyến vừa là đường cao hay \(AI\perp BC\)

Có \(BC=12\left(cm\right)\Rightarrow\frac{1}{2}BC=6m\)hay\(BI=6cm\). Áp dụng định lý Py-ta-go cho tam giác vuông \(ABI\)ta có :

\(AI^2+BI^2=AB^2\Rightarrow AI^2=AB^2-BI^2\)

\(\Leftrightarrow AI^2=10^2-6^2=64\Rightarrow AI=8cm\)

b) Có \(\widehat{ABM}\)là góc ngoài tại \(\widehat{ABC}\Rightarrow\widehat{ABM}=\widehat{BAC}+\widehat{ACB}\)

Có \(\widehat{ACN}\)là góc ngoài tại \(\widehat{ACB}\Rightarrow\widehat{ACN}=\widehat{BAC}+\widehat{ABC}\)

Mà \(\widehat{ACB}=\widehat{ABC}\)( do \(\Delta ABC\)cân ) nên\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

Xét \(\Delta ABM\)\(\Delta ACN\)có:

\(BM=CM\left(gt\right)\)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

\(AB=AC\)\(\Delta ABC\)cân )

\(\Rightarrow\Delta ABM=\Delta ACN\left(c.g.c\right)\Rightarrow AN=AN\left(dpcm\right)\)

c) \(\Delta BOC\)là tam giác cân tại O

d) Nối O với I , chứng minh cộng góc là ra \(\widehat{AIB}+\widehat{BIO}=180^o\)( dựa vaò đường cao và tam giác cân , từ đó suy ra )

26 tháng 4 2020

Nguyễn Thảo Nguyên             

em chịu khó gõ link này lên google

https://olm.vn/hoi-dap/detail/99235669166.html

26 tháng 4 2020

Thế lên google mak gõ cho nhanh nha bn!